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PREFACE

Because of the numerous books that have already appeared about the
classica Anaysis, in principle it is very difficult to bring new facts in this
field. However, the engineers, researchers in experimental sciences, and
even the students actually need a quick and clear presentation of the basic
theory, together with an extensive and efficient guidance to solve practica
problems. Therefore, in this book we tried to combine the essential (but
rigorous) theoretical results with a large scale of concrete applications of
the Mathematical Analysis, and formulate them in nowadays language.

The content is based on a two-semester course that has been given in
English to students in Computer Sciences at the University of Craiova,
during a couple of years. As an independent work, it contains much more
than the effective lessons can treat according to the imposed program.

Starting with the idea that nobody (even student) has enough time to read
severa books in order to rediscover the essence of a mathematical theory
and its practical use, we have formulated the following objectives for the
present book:

Accessible connection with mathematicsin lyceum
Self-contained, but well referred to other works
Prominence of the specific structures

Emphasis on the essential topics

. Relevance of the sphere of applications.

The flrst objective is assured by a large introductory chapter, and by the
former paragraphs in the other chapters, where we recall the previous
notions. To help intuition, we have inserted alot of figures and schemes.

The second one is realized by a complete and rigorous argumentation of
the discussed facts. The reader interested in enlarging and continuing the
study is still advised to consult the attached bibliography. Besides classical
books, we have mentioned the treatises most available in our zone, i.e.
written by Romanian authors, in particular from Craiova.

Because Mathematical Analysis expresses in a more concrete form the
philosophical point of view that assumes the continuous nature of the
Universe, it is very significant to revedl its fundamental structures, i.e. the
topologies. The emphasis on the structures is especially useful now, since
the discrete techniques (e.g. digital) play an increasing role in solving
practical problems. Besides the deeper understanding of the specific
features, the higher level of generalization is necessary for a rigorous
treatment of the fundamental topics like continuity, differentiability, etc.

To touch the fourth objective, we have organized the matter such that
each chapter debates one of the basic aspects, more exactly continuity,
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convergence and differentiability in volume one, and different types of
integrals in part two. We have explained the utility of each topic by plenty
of historic arguments and carefully selected problems.

Finally, we tried to realize the last objective by lists of problems at the
end of each paragraph. These problems are followed by answers, hints, and
sometimes by complete solutions.

In order to help the non-native speakers of English in talking about the
matter, we recommend books on English mathematical terms, including
pronunciation and stress, e.g. the Guide to Mathematical Terms [BT,]. Our
experience has shown that most language difficulties concern speaking,
rather than understanding a written text. Therefore we encourage the reader
to insist on the phonetics of the mathematical terms, which is essential in a
fluent dialog with foreign specialists.

In spite of the opinion that in old subjects like Mathematical Analysis
everything is done, we still have tried to make our book distinguishable
from other works. With this purpose we have pointed to those research
topics where we have had some contributions, e.g. the quasi-uniform
convergence in function spaces (8 11.3 in connection to [PM,] and [PM3]),
the structures of discreteness (8 111.2 with reference to [BT3]), the unified
view on convergence and continuity viathe intrinsic topology of a directed
set, etc. We aso hope that a note of originality there results from:

e The way of solving the most concrete problems by using modern
techniques (e.g. local extrema, scalar and vector fields, etc.);

e A rigorous but moderately extended presentation of severa facts
(e.g. higher order differential, Jordan measure in R", changing the
variables in multiple integras, etc.) which sometimes are either too
much simplified in practice, or too detailed in theoretical treatises;

e Theunitary treatment of the Real and Complex Analysis, centered on
the analytic (computational) method of studying functions and their
practical use (e.g. 811.4, 81V.5, Chapter X, etc.).

We express our gratitude to all our colleagues who have contributed to a
better form of this work. The authors are waiting for further suggestions of
improvements, which will be welcome any time.

The Authors

Crai ova, Septenber 2005
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CHAPTERI. PRELIMINARIES

§1.1. SETS, RELATIONS, FUNCTIONS

From the very beginning, we mention that a genera knowledge of
set theory is assumed. In order to avoid the contradictions, which can occur
in such a“naive’ theory, these sets will be considered parts of atotal set T,
I.e. elements of 97 (T). The sets are usualy depicted by some specific
properties of the component e ements, but we shall take care that instead of
sets of setsit is advisable to speak of families of sets (see [RM], [SO], etc).

When operate with sets we basically need one unary operation

A CA= {xeT: x ¢ A} (complement),
two binary operations

(A, B) > AUB= {xeT: xeAor xeB} (union),

(A, B) > AnB = {xeT: xeAand xeB} (intersection),
and a binary relation

A=Be xeAiff xe B (equality).

1.1. Proposition. If A, B, C € (1), then:

(i) Au(BuC)=(AuB)uC; AN(BNC)=(AnB)NC (associativity)

(i) Au(BNC)=(AuB) N (AUC); An(BUC)=(ANnB)U(ANC)
(distributivity)

(i) An(AUB)=A; AU(ANB)=A (absorption)

(iv) (AnCA) UB=B; (AUCA) N B=B (complementary)

(v) AuB=BUA;, AnB=BNA (commutativity).

1.2. Remark. From the above properties (i)-(v) we can derive the whole set
theory. In particular, the associativity is useful to define intersections and
unions of afinite number of sets, while the extension of these operations to
arbitrary familiesisdefined by n{A :iel}={xeT:Viel = xe A} ad

U{A iel}={xeT:Jiel suchthat xe A}. Some additiona notations
are frequent, e.g. @ = ANCA for the (unique!) void set, A\B = AnCB for

the difference, AAB = (A\B)uU(B\A) for the symmetric difference, Ac B
(defined by AU B = B) for the relation of inclusion, etc.
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More generally, a non-void set o</ on which the equality = , and the
operations |, v and A (instead of C, U, respectively ) are defined, such
that conditions (i)-(v) hold as axioms, represents a Boolean algebra.
Besides 27 (T), we mention the following important examples of Boolean
algebras. the algebra of propositions in the formal logic, the algebra of
switch nets, the algebra of logica circuits, and the field of events in a
random process. The obvious analogy between these algebras is based on
the correspondence of the following facts:

- aset may contain some given point or not;

- aproposition may be true or false;

- an event may happen in an experience or not;

- aswitch may let the current flow through or break it;

at any point of alogical circuit may be asignal or not.

In addition, the specific operations of a Boolean algebra allow the
following concrete representations in switch networks:

‘A
1A (double switch)
O—
Al
A
| . —» AVB (parallel connection)
A B

——> AAB (seria connection)

Similarly, in logical circuits we speak of “logical gates’ like

A—»@ —» JA  (non-gate)

AN

B—>(v)—> AvBVvC (or-gate)

"
ANl

BH@H A A BAC (and-gate)

c—



§ I.1. Sets, Relations, Functions

1.3. The Fundamental Problems concerning a practica redlization of a
switch network, logic circuits, etc., are the analysis and the synthesis. In the
first case, we have some physical realization and we want to know how it
works, while in the second case, we desire a specific functioning and we
are looking for a concrete device that should work like this. Both problems
involve the so-called working functions, which describe the functioning of
the circuits in terms of values of a given formula, as in the table from
bellow. It is advisable to start by putting the values 1, 0, 1, O,... for A, then
1,1,0,0,...for B, etc., under these variables, then continue by the resulting
values under the involved connectors A, v, —, €etc. by respecting the
order of operations, which is specified by brackets. The last completed
column, which aso gives the name of the formula, contains the “truth
values’ of the considered formula

As for example, let us consider the following disunction, whose truth-
values arein column (9):

(AAB) vI[(]A—> C)+B]
111 1 01 101
001 0 1 1101
100 1 01 110
000 1 11110
111 1 01001
001 1 100011
100 1 01010
000 O 1 00O00O
DO (9 @ (NG B)4)

where (1), (2), etc. show the order of completing the columns.

The converse problem, namely that of writing a formula with previously
given values, makes use of some standard expressions, which equal 1 only
once (called fundamental conjunctions). For example, if a circuit should
function according to the table from below,

A B C [f(AB,C) | fundamental conjunctions
111 1 AABAC

011 0 -

101 0 -

001 1 TAATBAC
110 0 -

010 1 1AABAC
100 1 ArIBAC
000 0 -
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then one working function is
f(A,B,C) = (AABAC)V (IAA IBAC)V ( |AABA IC)v(AA BA Q).
Thisform of fiscalled normal digunctive (see [ME], etc.).

The following type of subfamilies of 27 (T), where T = O, is frequently
met in the Mathematical Analysis (see [BN4], [DJ], [CI], [L-P], etc.):
1.4. Definition. A nonvoid family o7 < 97(T) is caled (proper) filter if
[Fo] D¢ 7,
[Fi] A B e#=AnBe 7;
[F)] (Ae &7 andBoA) = Be 7.
Sometimes condition [Fq] is omitted, and we speak of filtersin generalized
(improper) sense. In this case, &7 = & (T) is accepted as
I nproper filter.

If family <7 isafilter, then any subfamily 93c 7 for which
[BF] VAec# dBe B suchthat BC A,
(in particular o7 itself) is called base of thefilter <7

1.5. Examples. a) If at any fixed xe R we define 7 < 2°(T) by

# ={AcR: Fe >0suchthat Ao (Xx—¢, X+ €)},
then o7 isafilter, and abase of 7 is B={ (x—¢, x+ €): € >0}. It iseasy
toseethat N{AcR:Aec7} ={x}.
b) The family =7 < 97(N), defined by

# ={AcN: IneN suchthat Ao (n, —)},
isafilterin 22(N) for which 3= {(n, - ): neN} isabase, and

N{AcCN:Ae 7} =O.

c) Let Bc 2 (R be the family of interior parts of arbitrary regular
polygons centered at some fixed (x, y) € R?. Then

7 = {Ac R* 3IBe % such that Ac B}
is afilter for which family ¢, of all interior parts of the disks centered at
(%, y), isabase (aswell as A itself).

1.6. Proposition. In an arbitrary total set T = &J we have:
(i)  Any base A of afilter o7 97(T) satisfies the condition
[FB] VA, Be 93 3Ce 9B such that C < AnB.
(i) If Bc P (T) satisfies condition [FB] (i.e. together with [F] it is a
proper filter base), then the family of oversets
&' ={AcT: dBe A such that Ao B}
isafilterin 22(T); we say that filter & is generated by 9.
(iii) If Bisabaseof o7 then 73 generates 7.

4



§ I.1. Sets, Relations, Functions

The proof isdirect, and we recommend it as an exercise.
1.7. Definition. If A and B are nonvoid sets, their Cartesian product is
defined by A x B={(a, b): acA, beB}.

Any pat R < AxB is cdled binary relation between A and B. In

particular, if R TxT, it is named binary relation on T. For example, the

equality on T isrepresented by the diagonal & = {(x, X): xe T}.
If R isarelationon T, itsinverseisdefined by

RE={(x¥): (¥, ) e R}.
The composition of two relations R and S on T is noted
R oS={(x,y): 3zeTsuchthat (x,2 € S and(z,y) eR }.
The section (cut) of R at x is defined by
RIX]={yeT:(x,y) € R}.
Most frequently, a binary relation R on T may be:
Reflexive: 6 ¢ R ;
Symmetric: R =R ;
Antisymmetric: RN R~ =§;
Transitive: R c Rc R ;
Directed: R [X] " R [y] #9D forany x,y € T.

The reflexive, symmetric and transitive relations are called equivalences,
and usually they are denoted by ~ . If ~isan equivaenceon T, then each
xeT generates a class of equivalence, noted x* ={y €T : x~Vy}.

The set of al equivalence classesis called quotient set, and it is noted T/~.

The reflexive and trangitive relations are named preorders.

Any antisymmetric preorder is said to be a partial order, and usualy it is
denoted by <. We say that an order < on T istotal (or, equivaently, (T, <)
is totally, linearly ordered) iff for any two x, ye T we have either x<y or
y<x. Finaly, (T, <) issadtobewell ordered (or < isawell ordering on
T) iff < istotal and any nonvoid part of T has a smallest e ement.

1.8. Examples. (i) Equivalences:

1. Theequality (of sets, numbers, figures, etc.);
2. {((a,b),(c,d) eN*x N:a+d=b+c};
3. {((a,b),(c,d)) €Z? x Z*:ad = bc};
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4. {(A, B)e My(R)x Mn(R): 3T e My(R) suchthat B=T*AT}.

The similarity of the figures (triangles, rectangles, etc.) in R?, R®, etc., isan
equivaence especialy studied in Geometry.
(ii) Ordersand preorders:
Theinclusionin 2°(T) isapartial order;
N, Z, Q and R are totally ordered by their natural orders < ;
N iswell ordered by its natural order;

If Tis (totally) ordered by <, and Sis an arbitrary nonvoid set, then the
set F+(9 of dl functionsf: S — T, is partially ordered by

R ={(,g) € F«(9 x F+(9 : f(X) < g(X) atany xe S}.

This relation is frequently called product order (compare to the
examplesin problem 9, at the end of the paragraph).

> whpRE

(iii) Directed sets (i. e. preordered sets (D, <) with directed <):

1. (N, <), aswell asany totally ordered set;

2. Any filter 7 (e.g. the entire 9°(T), each system of neighborhoods 7(x)
in topological spaces, etc.) is directed by inclusion, in the sense that
A<BIiff BCA.

3. Letusfix xg €R, and note

D={(V,x) € ?(R) x R: 3e>0suchthatx e(Xo— &, X+ ¢)c V}.
Thepair (D,<) isadirected set if the preorder < is defined by
(V,x) <(U,y) & UcV.
The same construction is possible using neighborhoods U, V, ... of a
fixed point X, in any topological space.

4. The partitions, which occur in the definition of some integrals, generate
directed sets (see the integra calculus). In particular, in order for us to
define the Riemannian integral on [a, b] < R, we consider partitions of
the closed interval [a, b], i.e. finite sets of subintervals of the form

O={[X_1, %] k=12, ...,ma=%<X<..<X= b},
for arbitrary n eN*. In addition, for such a partition we choose different
systems of intermediate points
E@)={&k € [X1,x] €d:k=1n} .
It is easy to see that set D, of al pairs (0, & (8)), is directed by relation
<,where (3,§()< (8", (0))iff 6" < d™".

Thereis a specific terminology in preordered sets, as follows:
1.9. Definition. Let A be apart of T, whichis (partialy) ordered by <. Any
element X, € T, for which x< X, holds whenever xeA, is said to be an
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upper bound of A. If X, €A, then it is called the greatest element of A (if
there exists one, then it isunique!), and we note X, = max A.

If the set of all upper bounds of A has the smallest element x, we say that
is the supremum of A, and we note x=sup A,

An element X €A is considered maximal iff A does not contain elements
greater than X (the element max A, if it exists, is maximal, but the converse
assertion is not generally true).

Similarly, we speak of lower bound, smallest element (denoted as min A),
infimum (noted inf A), and minimal elements. If sup A and inf A do exist for
each bounded set A, we say that (T, <) isacomplete (in order).

Alternatively, instead of using an order R, we can refer to the attached

strict order R \ 6. The same, if R isan order on T, and xeT, then R[X] is

sometimes named cone of vertex x (especially because of its shape).
If apart C of T istotaly (linearly) ordered by the induced order, then we
say that CisachaininT.
An ordered set (T, R) is called lattice (or net) iff for any two x,y €T

there exist inf {X, y} = xAy and sup {X, y} = xvy. If the infimum and the
supremum exist for any bounded set in T, then the lattice is said to be
complete (or o - lattice). A remarkable example of lattice is the following:
1.10. Proposition. Every Boolean algebrais alattice. In particular, 2°(T) is
a(complete) lattice relative to .

Proof. We have to show that < is a (partial) order on 2” (T), and each
family {Aie 2?(T) : i €l } hasan infimum and a supremum. Reasoning as
for an arbitrary Boolean algebra, reflexivity of < means Av A=A. In fact,
according to (iii) and (ii) in proposition 1.1., we have

AVvA =[AA(AvB)]V[AA(AVvB)] =(AVA A(AvB) =Av(AAB) =A,

From A<B and B<A, we deduce that B = AvB = A, hence < is
antisymmetric. For trangitivity, if A<B and B<C we obtain A<C since

C=BvC=(AvB)vC=Av(BvC) =AvC.

Let us show that sup {A,B} = AvB holds for any A,Be 27 (T). In fact,
according to (iii), A<AvB and B<Av B. On the other hand, if A<X and
B<X, wehave AAX = Aand BAX = B, so that

XA(AvB) = (XAA) v (XAB) = AvB,
I.e. AvB < X. Similarly we can reason for inf { A,B} = AAB, aswell as for
arbitrary families of setsin T. &

1.11. Remark. The above proof is based on the properties (i)-(v), hence it
isvalid in arbitrary Boolean algebras. If limited to 97(T), we could reduce
it to the concrete expressions of AuB, AnB, AcB, etc. According to the
Stone's theorem, which establishes that any Boolean algebra o</ is
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isomorphic to a family of parts, verifying a property in o</ as for 9 (T) is
still useful.
1.12. Definition. Let X and Y be nonvoid sets, and R < XxY be arelation

between the elements of X and Y. We say that R is afunction defined on X
with values in Y iff the section R [x] reduces to a single element of Y for

any xeX. Alternatively, a function is defined by X, Y and a rule f , of
attaching to each xe X an element ye Y. In this case we note y = f(x),
x—y=1(x),f: XY, etc.

We say that f : Xi> Y is injective (1:1, i.e. one-to-one) iff f(X)= f(y)
whenever x=+Y.

If for any yeY there exists x in X such that y = f(x), then f is called
surjective (or onto). If f isboth injective and surjective, it is called bijective
(1:2 map of Xon'Y, or 1.1 correspondence between X and Y).

Any function f : Xi— Y can be extended to 9”(X) and 2°(Y) by considering
the direct image of Ac X, defined by

f(A) = { f(X) : xeA},
and theinverseimage of BC Y, defined by
f < (B) = {xeX: f(x) €B}.
If fisbijective, then f < (y) consists of a single element, so we can speak
of theinverse function f ™ ,defined by
x=f7Hy) oy= ().
Iff: X>Y andg: Y—>Z thenh: X—Z, defined by
h(x) = g(f(x)) for all xe X,
is called the composition of fand g, and we noteh = gof.
Thegraphof f: X—>Yisapart of X xY, namely
Graph (f) = {(x,y) € X xY:y=f(X)}.
On a Cartesian product XxY we distinguish two remarkable functions,
called projections, namely Pry: XxY — X, and Pry: XxY — Y, defined by
Pre(X, y) =x,and Pry(X,y) =Y.
In the general case of an arbitrary Cartesian product, which is defined by

X Xi={f:1 > uX|[f(i)eX},

iel iel
we get aprojection Pr; :(_XI Xj)— X foreach i €| , which has the values

le
Pri:(f) =1() .
Sometimes we must extend the above notion of function, and allow that

f(x) consists of more points; in such case we say that f is a multivalued (or
one to many) function. For example, in the complex analysis, f =1/ is

supposed to be an aready known 1:n function. Similarly, we speak of
many to one, or many to many functions.
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This process of extending the action of f can be continued to carry
elements from 22(97 (X)) to P(27(Y)), eq. if V< 27(X), then
f(7)={f(A) €e2(Y): AcT}.
1.13. Examples. Each part A ¢ X (# Q) is completely determined by its
characteristic function fo : X—{0, 1}, expressed by

Oif xegA
f =
A {1 if xeA.

In other terms, 97 (X) can be presented as the set of all functions defined on
X and taking two values. Because we generally note the set of all functions
f:X>Y by Y*, weobtain 2° = 22(X).

We mention that this possibility to represent sets by functions has led to
the idea of fuzzy sets, having characteristic functions with values in the
closed interval [0,1] of R (see [N-R], [KP], etc.). Formally, this means to
replace 2° = 22(X) by [0,1]*. Of course, when we work with fuzzy sets, we
have to reformulate the relations and the operations with sets in terms of
functions, eg. f — g asfuzzy setsmeans f < g asfunctions, Cf =1 —f,
fug=max{f,g}, fng=min{f,qg}, etc.

1.14. Proposition. Let f : X—Y be a function, and let I, J be arbitrary
families of indices. If Ajc X and Bjc Y hold for any i el and j € J, then:
() f(o{A:iel})= U{f(A):iel};
(i) f(m{A iel})c n{f(A): |el}
(i) £ (B ey = £ (B):jed};
(iv) f(n{B:je)= n{fT(B):jel};
(v) f<(€B)=C[f < (B)] holdsfor any BcY,
whilef (CA) and C[f (A)] generally cannot be compared.

The proof is|eft to the reader.

The following particular type of functions is frequently used in the
Mathematical Analysis:
1.15. Definition. Let S be a nonvoid set. Any function f : N— Sis called
sequence in S Alternatively we note f(n) = x, at any neN, and we mark
the sequence f by mentioning the generic term (Xy).

A sequence g:N— S is considered to be a subsequence of f iff g= foh
for some increasing h:N—N (i.e. p<q = h(p) <h(g)). Usualy we note
h(k) = nx, so that a subsequence of (x,) takes the form (xnk ).

More generdly, if (D, <) is a directed set, thenf : D —»S is caled
generalized sequence (briefly g.s., or net) in S Instead of f , the g.s. is
frequently marked by (xg), or more exactly by (Xg)sep , Where x4 = f(d),
v deD. If (E,<) isanother directed set, then g:E — Sis named generalized
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subsequence (g.s.s., or subnet) of f iff g = foh, where h:E— D fulfils the
following condition (due to Kelley, see [KJ]], [DE], etc.):
[s] vdeD JeeE such that (exacE=d<h(a)).

Similarly, if we note h(a)= d, , then ag.s.s. can be written as (Xda) :

1.16. Examples. @) Any sequenceisa g.s., since N is directed.
b) If D is the directed set in the above example 1.8. (iii)3, thenf . D> R,
expressed by f(V, X) = X, isageneraized sequence.
c) Let usfix some|[a, b] R, then consider the directed set (D, <) asinthe
example 1.8. (iii)4, and define a bounded function f : [a, b] — R. If to each
pair (9, §) € D we attach the so called integral sum

ot (8,8 =fE)(x-X0) + ... + F(En) (%0~ Xna),
then the resulting function o ¢ : D— R represents ag.s. which is essential in
the construction of the definite integral of f .

1.17. Remark. The notion of Cartesian product can be extended to
arbitrary families of sets {A : iel}, when it is noted X{A : iel}. Such a
product consists of all “choice functions” f: 11— U{A :iel}, such that
f()e A for each iel. It was shown that the existence of these choice
functions cannot be deduced from other facts in set theory, i.e. it must be
considered as an independent axiom. More exactly, we have to consider the
following:

1.18. The Axiom of Choice (E. Zermelo). The Cartesian product of any
nonvoid family of nonvoid setsis nonvoid.

We mention without proof some of the most significant relations of this

axiom with other properties (for detailssee [HS], [KP], etc.):

1.19. Theorem. The axiom of choice is logicaly equivalent to the

following properties of sets:

a) Every set can be well-ordered (Zermel0);

b) Every nonvoid partially ordered set, in which each chain has an upper
bound, has amaximal element (Zorn);

c) Every nonvoid partiadly ordered set contains a maximal chan
(Hausdorff);

d) Every nonvoid family of finite character (i.e. A is a member of the
family iff each finite subset of A is) has amaximal member (Tukey).

1.20. Remark. The axiom of choice will be adopted throughout this book,
as customarily in the treatises on Classical Analysis. Without insisting on
each particular appearance during the development of the theory, we
mention that the axiom of choice is essential in plenty of problems as for

10
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example the existence of a (Hamel) basis in any linear space (#{0},
compareto §1.3), the existence of g such that fog =1y, wheref: X—-Y, etc.

PROBLEMS §1.1.

1. Verify the De Morgan’'s laws:
C(AuB) =CANCB and C(A~B) = CAUCB.
Using them, ssimplify as much as possible the Boolean formulas:
(@ C[AU(B~(AULB))], and
(b) C[CXuY) n(CYUX)].
Hint. CX is characterized in general Boolean algebras by the relations
XUlX=T,and XnCX= .

2. Show that (22(T), v) and (22(T), N) never form groups.
Hint. &, respectively T, should be the neutral elements, but the existence of
the opposite e ements cannot be assured anymore.

3. Verify the equalities:

() A(BUC)= (AB\C (iv) A(BUC) = (AB) N (AC)
(i) A(AB)= ANB (V) (AB) AC= (ANC\BNC)
(i) (AUB\C= (AC) UB\C)  (vi) (AB\A= Q.

Hint. Replace X\Y = XN LY, and use the De Morgan ‘s laws.

4. Provethat :

(@ AA(BAC)=(AAB) AC

(b)An (BAC) = (AnB)A(ANC)

(c) AAA=UY

(dAAB=AiffB=Y

(el AABc (AAC) U (BA C) and give an example when c holds.
Hint. Take C = & and AnB= & asan examplein (e).

5. Let o7 bethe set of al natural numbers that divide 30, and let us define
xvy = the least common multiple of x and y

XAY = the greatest common divisor of x and y

Tx=30/x .

Show that oo/ is a Boolean agebra in which xAy = (xvy)/( xAy), and
represent o/as an algebra of sets.

11
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Hint. If T={a, b, ¢}, then Z°(T) represents ~/as follows:
o1, {a} 2 {b} <3 {c} 5 {ab«->6=[2 3] =23, etc,
hence T is determined by the prime divisors.

6. A filter &7 — 2(T) issaid to be tied (fixed in [H-S], etc.) if N7 = @,

and in the contrary case we say that it is free. Study whether
7 ={@=+A &€ P(T): CAisfinite}

isatied or freefilter.
Hint. If T isfinite, then A and CA are concomitantly in <7, hence [F] fails.

o7 isfree, since otherwise, if X € N7 = J, then because {x} isfinite, we

obtain T\ {X) € 7, which contradicts the hypothesisx € N 7.

7. Let (D, <) be adirected set. Show that
o# ={AcD: JaeD suchthat Ao{beD: b>a}}

isafilterin D. Moreover, if f: D—T isan arbitrary net, then f(c7) c 27(T)

isafilter too (called elementary filter attached to the net f ). Compare f(c#)
by inclusion in 22(2°(T)) to the elementary filter attached to a subnet of f.
Hint. The elementary filter attached to a subnet is greater.

8. Let §(T) bethe set of al proper filters o7 < 9°(T), ordered by inclusion.
A filter &7, which is maximal relative to this order, is called ultrafilter.
Show that 7 is an ultrefilter iff, for every Ac T, either A€ &7 or CA€ 7

hold. Deduce that each ultrafilter in afinite set T istied.
Hint. Let 7 be maximal. If AMB =& for some B& o7, then CA> B, hence

CAc o7 . If ANB =@ for all BE o7, then filter &7 U{A} is greater than

o#, which contradicts the fact that ©# is maximal.
Conversely, let <7 be afilter for which either A€ &7 or CA€ 7 hold for

al AcT. If filter & isgreater than <7, and A€ & \o7, then CA€ 7. But

A€ & and CA€ & cannot hold simultaneously in proper filters.

9. In dudlity to filters, the ideals o — 97(T) are defined by putting T in the
place of & in [Fy], U instead of N in [F,], and < instead of o in [F].

Show that if &7 < 97(T) isafilter, then

12
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of ={ AcT:CAc 7}

isan ideal. Reformulate and solve the above problems 6-8 for ideals.
Hint. Each ideal isdual to afilter of complementary sets.
10. If R isarelationon T, let us define

RO=5 R*T=R-R, R =U{R :i=12.},and R =R° U R".

Show that :
(a) R istransitive (also called transitive closure of R);

(b) R isapreorder (called reflexive and transitive closure);
QIR cS,thenR' c S ;

R US c(RUS);

e (R) =R .

11. Letf:X->Y,qg:Y—>Z andh:Z— W be functions. Show that :
1) (hog) of=heo (g-f);

2) foly=f, wherelyistheidentity of X (i.e. Ix(X) = X, V¥ xeX);
3) f, g injective (surjective) = gof injective (surjective);

4) gof injective (surjective) = f injective (g surjective);

5) f, g bijective=(gof) *=f tog*;

6) f[f < (B)nA] = BNf(A), butf < [f (A) N"B]oAN f < (B);
7) f[f < (B)) =B, with equality if f issurjective, and

f<_(f (A)) oA, with equality if f isinjective(i.e. 1:1).

12. Let f: X —»Y be afunction, and suppose that there exists another
function g: Y — X, such that gof = Iy and fog =1y . Prove that f must be
1:1 from Xonto Y,andg=f *.

13. In X = R* we definethe relations:

A ={((% Y),(u,V)) : either (x<u) or (x=uandy < v)};

IT={((X Y),(u, V) : x<uand y<v};

K={((t.%)(s y)) : s—t>|x-y|}.
Show that A is a total order (called lexicographic), but IT and K (called
product, respectively causality) are partial orders. Find the corresponding
cones of positive elements, establish the form of the order intervals, and
study the order compl eteness.

14. Inalibrary there are two types of books:
Class A, consisting of books cited in themselves, and

13
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Class B, formed by the books not cited in themselves.

Classify the book in which the whole class B is cited.

Hint. Impossible. The problem reduces to decide whether class B belongs
to B, which isn’t solvable (for further details see [RM],[R-5], etc.).

15. Let ussuppose that aroom has three doors. Construct a switch net that
allowsto turn the light on and off at any of the doors.

Hint. Write the work function of a net depending on three switches a, b, c,
starting for example, with f(1,1,1) = 1 as an initial state, and continuing
with f(1,1,0) = 0, f(1,0,0) = 1,etc. ; attach a conjunction to each value 1 of
thefunctionf, eg. arbac tof(1,1,1) = 1,a A |ba | ¢ tof(1,0,0) = 1, etc.

16. Construct a logical circuit, which realizes the addition of two digits in
the base 2. How is the addition to be continued by taking into account the
third (carried) digit?

Hint. Adding two digits A and B gives atwo-digit result:

OFr ORr >
OCOrR W
O O Orn
OFr EkFkO|ln

where s is the sum-digit and c is the carried-digit. We can take c = AAB
and s = (AvB)A | (AAB). The circuit has the form (called semi-
summarizer, or half-adder):

Ay I
, OO

S

Adding three digits yields atwo-digits result too, asin the following table:

OFrRPOFROFROR|P>
OO0OFRFPFOOR R D
ecNeoNeoNeN W W I@)

COOFrRPRORFREFREFLO
OFrRPrPFPOPFRPOORFRW®m

H
N
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The resulting digits ¢ and s may be obtained by connecting two
semi-summarizes into a complete summarizer (alternatively called full-
adder, asin [ME], etc.).

15



§1.2. NUMBERS

The purpose of this paragraph is to provide the student with a unitary idea
about the diagram:

/CcK

<«
D

NcZcQcRc

2.1. Definition. We consider that two sets A and B (parts of a total set T)
are equivalent, and we note A~B, iff there exists a 1:1 correspondence
between the elements of A and B. Intuitively, this means that the two sets
have “the same number of elements’, “the same power”, etc. The
equivalence class generated by A is called cardinal number, and it is

marked by A =card A.

There are some specific signs to denote individual cardinals, namely:
2.2. Notations. card @ =0 (convention!)

card A=1 iff Aisequivalent to the set of natural satellites of Terrg;
card A=2 iff Aisequivalent to the set of magnetic poles;

card A=n+1 iff for any xe Awehavecard (A\{x})=n;

All these cardinas are said to be finite, and they are named natural
number. The set of al finite cardinasis noted by N, and it is called set of

natural numbers. If A ~ N, then we say that A is countable, and we note
card A=Nq (or card A=cq , €etc.), which is read aleph naught. If A ~Z(N),

then A has the power of continuum, noted card A =card (2") = N = 250 (or
card A=c, etc.), where 2" ~ 22(N).

In order to compare and compute with cardinals, we have to specify the
inequality and the operations for cardinas. If a = card A, and b = card B,
then we define:

1. a<b iff thereis Csuchthat A~C c B;

2. a+b=card(AuB),where AnB= O ;
3. a-b=card (AxB) ; and

4. a®=card(AP) .

15
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Now we can formulate the most significant properties of X,and N :
2.3. Theorem. = isan equivalence, and < isatota order of cardinals.
In theseterms, the following formulas hold:
() No<2%=N;
(ll) No+No=No, XoNo=Np;
(i) N+NX=N,and XX =K.

The proof can be found in [HS], etc., and will be omitted.

To complete the image, we mention that according to an axiom, known as
the Hypothesis of Continuum, there is no cardinal between X, and .

The ARITHMETIC of N is based on the following axioms:

2.4. Peano’'s Axioms.
[P 1isanatura number (alternatively we can start with 0);

[P,] For eachn <N, there exists the next one, noted n’ eN;
[Ps] Forevery n eN, wehaven’ #1,;
[P n=miffn’'=m’";
[Ps] IflecP,and[ne Pimpliesn’cP],thenP=N.
The last axiom represents the well-known induction principle.

The arithmetic on N involves an order relation, and algebraic operations:
2.5. Definition. If n,me N, then :
1.n < m holdsiff there exists peN such that m= n+ p;
2.nt 1=n’,andn+ m’= (n+ m)’ (addition);
3.nl=n,andnm’= nm+ n (multiplication).

We may precise that the algebraical operations are defined by induction.

2.6. Remark. It is easy to verify that (N, +) and (N, .) are commutative
semi-groups with units, and (N, <) istotally ordered (see [MC], [SG], €tc.).
The fact that (N, +) is not a group expresses the impossibility of solving the
equation a + x = b for arbitrary a, beN. In order to avoid this
inconvenience, set N was enlarged to the so-called set of integers. The idea
isto replace the difference b — a, which is not dways meaningful in N, by a
pair (a, b), and to consider (a, b) ~ (c, d) iff a+ ¢ = b+ d. The integers will
be classes (a, b)* of equivaent pairs, and we note the set of all integers by
Z=NxN/[~.

The operations and the order relation on 7Z are defined using arbitrary

representatives of the involved classes, and we obtain:
2.7. Theorem. (Z,+, .) isacommutative ring with unit, and (Z, <) istotally
ordered such that < is compatible to the algebraical structure of ring.

16



§ 1.2. Numbers

2.8. Remark. Set 7Z is not a field, i.e. equation ax = b is not aways
solvable. Therefore, similarly to N, Z was enlarged, and the new numbers

are caled rationals. More exactly, instead of a quotient b/a , we speak of a
pair (a, b), and we define an equivalence (a, b) ~ (c, d) by ad = bc. The
rational numbers are defined as equivalence classes (a, b)" , and the set of
al these numbersisnoted Q=7 x Z [ ~.

Using representatives, we can extend the algebraical operations, and the
order relation, from Z to Q , and we obtain:

29. Theorem. (Q , +,.) isafied. It istotally ordered, and the order < is
compatible with the algebraical structure.

2.10. Remark. Because Q aready has convenient algebraical properties,

the next extension is justified by another type of arguments. For example,
1; 1.4; 1.41; 1.414; 1.4142; ...
which are obtained by computing-/2, form a bounded set in Q, for which

thereis no supremum (since 2 ¢ Q). Of course, this“lack” of elementsisa
weak point of Q. Reformulated in practical terms, this means that equations
of the form x* — 2 = 0 cannot be solved in Q.
There are several methods to complete the order of QQ; the most frequent

Is based on the so-called Dedekind's cuts. By definition, a cut in Q is any
pair of parts (A, B), for which the following conditions hold:
(i) AuB=Q;
(i) a<bwhenever ac A and be B (hence AnB = O);
(i) [(@" <aeA) = acA],and[(b'>beB)=Db’ <B].

Every rational number xe Q generates a cut, namely (A , By) , where

Ai={acQ:a<x},andB,={becQ:b>x}.

There are still cuts which cannot be defined on this way, as for example

A=Q\B,andB={x Q. : x¥*>2} : they definetheirrational numbers.

2.11. Definition. Each cut is called real number. The set of all real
numbers is noted R. A real number is positive iff the first part of the

corresponding cut contains positive rational numbers. The addition and the
multiplication of cuts reduce to ssimilar operations with rational numbers in
the left and right parts of these cuts.

2.12. Theorem. (R, +, .) is a field. Its order < is compatible with the
algebraical structureof R ; (R, <) isacompletely and totally ordered set.

17
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2.13. Remark. The other constructions of R (e.g. the Cantor’ s equivalence

classes of Cauchy sequences, or the Weierstrass method of continuous
fractions) lead to ssmilar properties. More than this, it can be shown that the
complete and totally ordered fields are al isomorphic, so we are led to the
possibility of introducing real numbers in axiomatic manner:

2.14. Definition. We call set of real numbers, and we note it R, the unique

set (up to an isomorphism), for which:

1. (R, +,-)isafied;

2. < isatotal order on R, compatible with the structure of afield ;

3. (R, <) is complete (more exactly, every nonvoid upper bounded subset
of R has a supremum, which is known as Cantor’ s axiom).

2.15. Remark. Taking the Cantor’s axiom as a starting point of our study
clearly shows that the entire Real Analysis is essentialy based on the order
completeness of R. At the beginning, this fact is visible in the limiting
process involving sequencesin R (i.e. in convergence theory), and later it is
extended (asin 8l1.2, etc.) to the general notion of limit of afunction.

We remember that the notion of convergence is nowadays presented in
avery general form in the lyceum textbooks, namely:
2.16. Definition. A number | eR is called limit of the sequence (x,) of red
numbers (or x, tendsto | in the space S= R, etc.), and we note

I =1im X,,

n—oo
(or x, — 1, etc) iff any neighborhood (I —¢, | + €), of |, contains all the
terms starting with some rank, i.e.
v €>03ny(e) eNsuchthat [n> ng(e) =|x—1|<g].
If a sequence has alimit it is said to be convergent, and otherwise it is
considered divergent.

Among the most important consequences of the axioms of R (due to
Cantor, Weierstrass, etc.) we mention the following basic theorem:
2.17. Theorem. (Cantor). If ([a,,b,]) IS @ decreasing sequence of
closed intervalsin R, i.e.

[ao, bo] D [al, bl] D...D [an, bn] D...
then:
a) The sequences (a,) and (b,) are convergent;
b) o = n{[a, by :NeN} = T ;
c) [inf{b,-a,: neN} = Q] :>[rl]im aﬂzlzr!im b,] = ={l}.
—>00 —>00
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Proof. a) Sequence (a,) is increasing and bounded by each by, , hence there
exists o = sup a, . Consequently, for any € >0 there exists n(g) e N such that
o —¢&<ay < o, henceaso a —& < ayy < a, < o, whenever n> n(e).
Thismeansthat o = lima, . Similarly, g =inf b, isthelimit of (by).

n—oo
b) o+ & becausea < B, hence o/ o[ a, B] . Atitsturn, o< B must be
accepted since the contrary, namely § < o, would lead to § < a, and by < o
for somep, g N, and further § < bs< a, and by < a < o for somes, t eN,
which would contradict the very definition of oo and 3 .
c) Of coursg, if inf{b,—a,: nEN} = 0, then a = 3, because for arbitrary

neN we have b, —a, > B — o . If we note the common limit by I, then we
finadly find that o7 ={l}. &

There are several more or less immediate but as for sure useful
conseguences of thistheorem, as follows:
2.18. Corollary. Thefollowing order properties hold:

a) Ifa>0isfixedinR,and a < % isvalid for any neN’, thena = 0;

b) The sequence (%j Isconvergentto O ;

c) Any increasing and upper bounded sequence in R is convergent, as well

as any decreasing and lower bounded one (but do not reduce the
convergence to these cases concerning monotonic sequences!);
d) If (x,) isasequencein R, X, € [an, by] for al neN, and the conditions of

the above theorem hold, then x,—| (the “pincers’ test).
e Ifa, »0,leR, and | x,—1| < a, holdsfor al neN, then x,—I.

2.19. Remark. In spite of the good algebraical and order properties of R,

the necessity of solving equations like ¥’ + 1 = 0 has led to another
extenson of numbers. More exactly, we are looking now for an
algebraically closed field C, i.e. afield such that every algebraical equation

with coefficients from C has solutionsin C. To avoid discussions about the
condition i? = -1, which makes no sense in R, we introduce the new type of
numbers in a contradiction free fashion, namely:

2.20. Definition. We say that C = R xR isthe set of complex numbers (in

axiomatical form) if it is endowed with the usua equality, and with the
operations of addition and multiplication defined by:
(a,b)+(c,d=(@+cb+d),
(a, b)(c, d) = (ac—bd, ad + bc).
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2.21. Theorem. (C, +, -) isafield that contains (R, +, -) asasubfield, in the
sense that A > ( A, 0) is an embedding of R in C, which preserves the
algebraic operations.

The axiomatical form in the above definition of C is valuable in theory,

but in practice we prefer ssmpler forms, like:
2.22. Practical representations of C. By replacing ( A,0) by A in the above

rule of multiplying complex numbers, we see that C forms a linear space of
dimension 2 over R (see 81.3, [V-P], [AE], etc.). In fact, let 9B = {u, i},

where u = (1,0) and i = (0,1), be the fundamental base of this linear space.
It is easy to seethat u isthe unit of C (corresponding to 1eR), and i*= - u.

Consequently each complex number z = (a, b) can be expressed as
z=au+bi=a+hbi,
which is called algebraical (traditional) form. The components a and b of
the complex number z = (a, b) are called real, respectively imaginary parts
of z, and they are usually noted by
a=Rezb=Im z

Starting with the same axiomatic form z=(a, b), the complex numbers can
be presented in a geometrical form as points in the 2-dimensional linear
space R?, when C is referred to as a complex plane. Addition of complex
numbers in this form is defined by the well-known parallelogram’s rule,
while the multiplication involves geometric constructions, which are more
complicated (better explained by the trigonometric representation below).
The geometric representation of C is advisable whenever some geometric
Images help intuition.

Replacing the Cartesian coordinatesa and b of z= (a, b) from theinitia
geometric representation by the polar ones (see Fig.1.2.1. below), we obtain

the modulus
p=1|7=+a*+b?,

o for zin the quadrart |
O=argz=<m + a for zinthequadrantsll,lil
2r — «a for zinthe quadrant IV

and the argument,

where o = arctg b € (—% + %) So we are led to the trigonometric form
a

of the complex number z= ( p, ) R, x [0, 2r), namely
z=p(cos O +isind).
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We mention that the complex modulus |z reduces to the usual absolute
value if z €R, and the argument of z generalizes the notion of sign from

the real case. Using the unique non-trivial (i.e. different from identity)
idempotent automorphism of C, namely z= a+ ib — z =a- ib, caled
conjugation, which realizes a symmetry relative to the real axis, we obtain
lZ=(z-2)"?, i.e. the norm derives from algebraical properties.

Almz
b z
p
e A -
0 a Re z
Fig.1.2.1.

The complex numbers can also be presented in the matrix form

5

z= :

-b a

where a, b R, based on the fact that C is isomorphic to that subset of
M ,5(R), which consists of all matrices of thisform.

Finally we mention the spherical form of the complex numbers, that is
obtained by the so called stereographical projection. Let < be a sphere of
diameter ON = 1, which is tangent to the complex plane C at its origin.
Each straight line, which passes through N and intersects C, intersects &
too. Consequently, every complex number z = x + iy, expressed in R® as
z(x,y,0), can be represented asapoint P& 5, ) € o'\ {N} (seeFig.l.2.2.).
This correspondence of &\ {N} to C is called stereographical projection,
and &/ is known as the Riemann’s sphere (see the analytical expression of
the correspondence of zto P in problem 9 at the end of this section).

The Riemann’s sphere is especially useful in explaining why C has a

single point at infinity, simply denoted by oo (with no signin front!), which
isthe correspondent of the North pole N € &7 (see 8l1.2.).
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G4 N0,

y=Imz

¢ 0
=R
X ez 2= (x 1, 0)

Fig.[.2.2.

The fact that C is agebraically closed (considered to be the fundamental

theorem of Algebra) will be discussed later (in chapter VI11), but the special
role of C among the other sets of numbers can be seen in the following:

2.23. Theorem. (Frobenius). The single real algebras with division (i.e.
each non-null element has an inverse), of finite dimension (like a linear
space), are R, C and K (the set of quaternions; see [C-E], etc.).

In other words, these theorems say that, from algebraical point of view, C

IS the best system of numbers. However, the “nice” and “powerful” order
structure of the field R is completely lost in C. More exactly:

2.24. Proposition. There is no order on C, to be compatible with its
algebraical structure (but different from that of R).

Proof. By reductio ad absurdum (r.a.a.), let us suppose that < is an order
relation on C such that the following conditions of compatibility hold:
z<Zand v {eC=z+{<Z+(;
z<Zand0< (=2z({< Z_.
In particular, 0 < z implies 0< Z' for al neN. On the other hand from z
and ¢ positive in C, and A and p positive in R, it follows that A z+ p ¢ is
positive in C. Consequently, if we suppose that 0<z «C\ R, , then al the

elements of C should be positive, hence the order < would betrivia. <

2.25. Remark. We mention that R can be extended to other ordered
algebras, but we have to renounce severa agebraical properties. Such an
aternative is the algebra of double numbers, D = R x R, where, contrarily
toi’= -1, weaccept that j*=+1,i.e (0,1)%=(1,0).

The list of systems of numbers can be continued; in particular, the spaces
of dimension 2" can be organized as Clifford Algebra (see [C-E], etc.).
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Besides numbers, there are other mathematical entities, called vectors,
tensors, spinors, etc., which can adequately describe the different quantities
that appear in practice (see [B-S-T], etc.).

Further refinements of the present classification are possible. For
example, we may speak of algebraic numbers, which can be roots of an
algebraical equation with coefficients from Z , respectively transcendent

numbers, which cannot. For example, ~/2 is algebraic, while e and = are
transcendent (see [FG], [SG], etc.).

Classifying a given number is sometimes quite difficult, as for example
showing that teR \ Q. Even if we work with © very early, proving its

irrationality is still a subject of interest (e.g. [MM]). The following
examples are enough sophisticated, but accessible in the lyceum framework
(if necessary, see 8l11.3, 8V.1, etc.).

2.26. Proposition. Let usfix p, g, n N, and note
x"(gx— p)"
P, (X) = (9 ‘- p)

T

,and X, = IPn(x)sinx dx.
0

We claim that :

1. Both P,® (0), and P,® (EJ eZ for any order of derivations eN;
q

2. lim x,=0;

n—oo
3. neR\Q.
Proof. 1. If we identify the binomial development of P, with its Taylor
formula (compare to proposition 17, 8l11.3), then we can write:

P, (x) = Z( )" klckpn kgkyn+k = z P(S)(O)x
k=0 n!
where

0 if s<n or s>2n

P9 (0)= 1 nk (N+K)! k)

(-1) CXp"*gX if s=n+k,k=1,n

(n+Kk)!
n!
sinN, includings= 0 (when P, isnot derived).

Changing the variable, X >t = X - E,weobtain

q
P = HEEPL — g,

Because eN, aswell as CeN, it follows that P, (0) < Z for all

23



Chapter |. Preliminaries

hence P, (Ej e Z reduces to Q,°(0) <Z, which is proved like the former
q

membership P,® (0) <Z.
2. If wenote pu = sup{| x(gx-p) | : Xe[O, =]}, we obtain
T V4 n n
: Ko _ M
| X | < J(;|Pn(x)smx|dxg J(;Fdx =l
which showsthat x, >0 (¢Z !).
3. Integrating 2n+ 1 times by parts, we obtain

Xn = - COSX [Pa(X)-...+(-1)"Py®(X)]

5 -
If we accept that 7 = ge@ , then from property 1 we will deduce x,eZ’,

which contradicts 2. &>

2.27. Convention. Through this book we adopt the notation I' for any one
of the fields R or C, especially to underline that some properties are valid

in both real and complex structures (e.g. see the real and the complex linear
spacesin 81.3, etc.).

A special attention will be paid to the complex analysis, which turns out
to be the natural extension and even explanation of many results involving
real variables. Step by step, the notion of real function of a real variableis
extended to that of complex function of a complex variable:

2.28. Extending functions from R to C may refer to the variable, or to the

values. Conseguently, we have 3 types of extensions:

a) Complex functionsof areal variable. They have the form

f:l 5C,where | cR,
and represent parameterizations of curvesin C (compare to 8VI.1). These
functions are obtained by combining the real parametric equations of the
curves. For example, the real equations of a straight line which passes
through z, and has the direction (, lead to the complex function
Z=7Z+t(, teR.

Similarly, the circle of center zy and radius r , in C, has the
parameterization

z=2z +r(cost+isint), t [0, 2n).
b) Real functions of a complex variable, which are written as
f:D>R,wheeDcC.
They have a complex variable, but real values, and the ssmplest examples
are| - |, arg, Re, and Im. Their graphs can bedonein R®*~ C x R.
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c) Complex functions of one complex variable. They represent the most
important case, which is specified as
f:D —->C,whereD c C.
The assertion “D is the domain of f “ is more sophisticated than in R.

More exactly, it means that:
e f isdefined onD;
e D isopeninthe Euclidean structureif C;

e D isconnected in the same structure (see 8l11.2. |ater).
The action of f isfrequently noted Z = f(z), which is ashort form for:

CoD>z—5f(z)=2eC.

If weidentify z=x+iy eC with (x,y)eR?, thenf can be expressed by
two real functions of two real variables, namely
f(2) = P(x,y) +1Q(X ),
where the components P and Q are called real part, respectively imaginary
part of f.Thisformof f isvery convenient when we are looking for some
geometric interpretation. Drawing graphs of such functions is impossible
since C x C ~ R* but they can be easily represented as transformations of

some plane domains (no matter if real or complex). In fact, if Z=X+iY,
then the action of f isequivalently described by the real equations

{X=wa

Y =Q(x,y)

In other words, considering f = (P, Q), we practically reduce the study of
complex functions of a complex variable to that of real vector functions of
two real variables. On this way, many problems of complex analysis can be
reformulated and solved in real analysis. This method will be intensively
used in 8l11.4 (seeadso [HD], [CG], etc.).

Alternatively, if z, the argument of f, is expressed in trigonometric form,
then theimage through f becomes
f(2) = P(p, 6)+ 1 Q(p, 0) .
If we use the polar coordinates in the image plane to precise f(2) by its
modulus | f(2)| = M(X, y), and its argument arg f(z) = A(X, y), then
f(2) = M(X, y)[cos A(X, y) + i SIN A(X, Y)] .
Finally, if both zand Z are represented in trigonometric form, then
f(z) = R(p, 0)[cos B(p, 0) + isin B(p, 0)].

,(X,y)eD QR2~C.
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PROBLEMS §1.2.

1. Let Abeaninfiniteset (i.e. card A >N ), and let usfix a € A. Show that
A~ [A\{a}].
Hint. Consider a sequence (X,) in A, such that X, = a, and define a bijection
f:A—>[A\{a}], eq.
{x if X=X,
f(x)= :

Xpep 1T X=X,

2. Show that there are infinitely many prime numbers (in N).
Hint. If 2,3,5,...,p arethe former prime numbers, then n=2-3.-5-...- p+1
IS another prime number, and obviously n > p.

3. Showthat v/2,€e,In2 ¢Q.
Hint. In the contrary case, we should have /2 = g , With p and g relatively

prime integers. The relation p = 2g° shows that both p and q are even.
To study e, let us note a partial sum of its series by

n 1
and evaluate
e-s, = 1 1+ 1 + 1 +... <
(n+1)! n+2 (n+2)(n+3)

1 1 ( 1 )2 n+2 1
1+ + +.n|= <
(n+1)! n+2 \n+2 (n+Y!'(n+21) nn!
Thus we obtain en! —s,n! < % , Where s,n!eN. If we accept that e = g

for some p, q €%, then en! €Z too, for enough large n, but it isimpossible

the difference of two integers to be under % :

Finally, In2= P meanse® = 2°, hence e should be even (nonsense).

4. Comparethereal numberssinl, sin2, and sin 3.
Hint. Develop sin 20, and use 3= r.
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5. Writein the binary system (basis 2) the following numbers (given in
basis 10): 15¢N; -7 eZ; 2/3,0.102, -2.036 < Q; n,+/2 cR\ Q.
What gives the converse process?

6. Prove by induction that for any neN” we have:
1 1 1 2n-1
< ,and

a —+—+..+
b) (1+X)" > 1+ nx if x> -1.

1 2 n- on

7. Verify the sub-additivity of the absolute valuein R and C.

Hint. It is sufficient to analyze the case of C, where we can use the

Euclidean structure of the complex plane, generated by the scalar product
<(X,Y), (U, V)>=xu+ yv.

8. Find the formulas which correlate the coordinates of P e/, and zeC
through the stereographical projection. Use them to show that the image of
any circle on the sphereis either circle or straight line in the plane.
Hint. N(0,0,1), P(¢, », ) and z(X, y, O) are collinear, hence

E n ¢-1 PN _ON? 1

X y -1 N zN?2 x?+y?+1
Point Pe &7 ison acircleif in addition it belongsto a plane

AE+Bn+C{+D=0.

Theimageisastraight lineiff N belongsto thecircle,i.e. C+D =0.

9. Write the parameterization of the following curvesin the plane C:
ellipse, hyperbola, cycloid, asteroid, Archimedes's spiral, cardioid, and the
Bernoulli’s lemniscates.
Hint. We start with the corresponding real parameterizationsin Cartesian or
polar coordinates, which are based on the formulas;

Ellipse: x=acost,y=bsint, te[0,2r];

Hyperbola x=acht,y=bsht,teR;

Parabolas y=ax + bx+c, xeR ;

Cycloid: x =a(t-sint), y =a(1-cost) , t€[0,2r];

Asteroid: x=acos’t,y= bsin’t, te[0,2x];

Archimedes'sspira: r=40,0>0;

Cardioid: r = a(/+cos 0), 0 e(—n,+x); and

Bernoulli’s lemniscate: r*= 2a*cos 260, 6 [-Z, 2] [, 2],
If necessary, interpret the explicit equations as parameterizations. Combine
these expressionsto obtain z=x+1y,or z=r(cos 0+ i sin ).
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10. Using the geometrical meaning of |-| and argin C, find that part of C
which is defined by the conditions 1<|z—i|<2and 1<argz < 2.

Show that if |z |=|z|=|z]>0, then

B4 =1argﬁ.

;-2 2 " Z

Hint. The points z;, z,, zz belong to a circle of center O, and

arg

arg£ —arg{—argz.
2

Measure the angle inscribed in this circle, which has the vertex at z; .

11. Let D = {x+ jy: x, yeR} , where j> = +1, be the algebra of double
numbers, and let us note X = {(x+ jy, u+ jv): u—x=|v—-y|}. Show that IC

iIsapartial order on I , which extends the order of R, and it is compatible
with the algebraica structure of D. In particular, the squares (x + jy)* are
always positive.

Hint. The cone of positive double numbers is delimitated by the straight
linesy =+x, and contains R..

12. Solvethe equation

27— -4+ 2724 - 22+ 72 +42-2=0
inN,Z,Q,R,C,and .
Hint. Usethe Horner’s scheme to write the equation in the form

(2 -D(z-1)(Z-2)(+1)=0.

Pay attention to the fact that 2> 0 always holdsin I (see problem 11 from
above), so that zZ +1=0 has no solutions, while z>—1=0 has 4 solutions
in this space.
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§1.3. ELEMENTS OF LINEAR ALGEBRA

The linear structures represent the background of the Analysis, whose
main purpose is to develop methods for solving problems by a loca
reduction to their linear approximations. Therefore, in this paragraph we
summarize some results from the linear algebra, which are necessary for
the later considerations. A general knowledge of the algebraic structures
(like groups, rings, fields) is assumed, and many details are omitted on
account of aparallel course on Algebra (seeaso [AE], [KA], [V-P], etc.).

Asusualy, I" denotes one of the fields of scalars, R or C.
3.1.Definition. The nonvoid set £ is said to be a linear space over T iff it
Is endowed with an internal addition + : £ x £ — L, relative to which
(L,+) is a commutative group, and also with an external multiplication by
scalars -:I'x £L - L ,suchthat:
[Li] o(BX) = (apf)xforany a,P e I'and xe L;
[La] a(x+y)=oax+ayforanyoa e Fand X,y e L,
[Ls] 1-x = x forany xe L.

The elements of £ are usudly called vectors. Whenever we have to

distinguish vectors from numbers or other elements, we may note them by
an arrow, or an line over, e.g. X, or X. In particular, the neutral element

relative to the addition is noted 9, or simply O (but rarely 0, or 0), if no
confusion is possible. It is called the origin, or zero of L.

If I' =R, wesay that £ isareal linear space, while for I' = C the space
L issaid to be complex.

Any nonvoid part S of £ iscaled linear subspace of £ iff itisclosed
relative to the operations of L. In particular, £ itself and { 9} represent
(improper) subspaces, called total, respectively null subspaces.

3.2. Examples. a) I' itself isalinear space over I' . In particular, C can be

considered a linear space over R, or over C. Obvioudy, R is a linear
subspace of the real linear space C, which is organized as R? .
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b) Therea spaces R? or R of al physical vectors with the same origin,
e.g. speeds, forces, impulses, etc., represent the most concrete examples.
Alternatively, the position vectors of the points in the geometrical space,
or the classes of equivalent free vectors form linear spaces. The addition is
done by the parallelogram rule, while the product with scalars reduces to
the change of length and sense. Of course, R? is a linear subspace of R?,
more accurately up to an isomor phism.
c) The sets R" and C", where neN’, are linear spaces if the operations
with vectors are reduced to components according to the following rules:
(X, X25 o0 Xn) + (Y2 V2uuus V) = (gt Y1, Xot Vao,.. X0t V) , @nd
A (X1, X2y <oy Xn) = (AXg, AX2y. 0y AXR).
d) The set T of all numerical sequences is alinear space relative to the
operations similarly reduced to components (i.e. terms of the sequences). In
particular, R" is alinear subspace of R", for any ne N*,

e) If £ isalinear space, and T is an arbitrary set, then the set F (1),
of al functions f:T— L, “borrows’ the structure of linear space from L,

in the sense that, by definition, (f + g)(t) = f(t) + g(t), and (Af) (t) = A f(t) at
any teT. This structure is tacitly supposed on many “function spaces’ like
polynomial, continuous, derivable, etc.

3.3. Proposition. The following formulas hold in any linear space:

(i) Ox=A9 =9, andconversdy,

(i) Ax= g implieseither A= 0,0r x= 9,

@) (A)xX=A(x)= =Ax

Proof. FromOx+ Ox= (0+ O)x=0x+ 9 wededuce0Ox= 9 ; therest of
the proof is similar, and we recommend it as an exercise. &

A lot of notions and properties in linear spaces simply extend some
intuitive facts of the usual geometry, as for example:
3.4. Definition. Any two distinct elements x, y € £ determine a straight

line passing through these points, expressed by
AXY)={z=@- )x+ 1y. L e T}.
A set A c L iscdledlinear manifold iff A(x,y)c A whenever x, ye A.

Any linear manifold H < £, which is maximal relative to the inclusion

c, Iscaled hyper plane.
That part (subset) of theline A (X, y), which is defined by
[X,y] ={z= (1- )x+ Ay: 1 €[0,1] = R},
Is called line segment of end-points x and y. A set Cc L is said to be

convex iff [x,y] <C whenever x,y € C.
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It is easy to see that any linear subspace is alinear manifold, and any
linear manifold is aconvex set. In this sense we have;
3.5. Proposition. The set AL is alinear manifold if and only if its

trandlation to the origin, defined by
A — X={y=X— X: Xe A},

where xp € A, isalinear subspaceof L .

Proof. If A isalinear manifold, then S = A — X, isclosed relative to the
addition and multiplication by scalars. In fact, if y;, ,y» € S, then they have
theform y; = x; — %o and y, = X,— Xy, for some Xy, X, € A. Consequently,

Vit Vo= (X + Xo—Xo) — X € S, because

Xp+ Xo — X = 2(%x1+%x2j—xo cA.

Similarly, if y=x-x3,and A1 e I', then
AYV=((1-A) X%+ AX)a— % €S.

Conversaly, if S = A — X, isalinear subspace of L,then A =S + X
isalinear manifold. Infact, for any x; = y; + Xo and X, = y,+ X, from A,

their convex combination has the form
(L) X+ A%=(1-A) Y1+ AY)+ % eS + X,

which shows that A (x,%)c A . &
3.6. Corollary. H < L isahyper planeif and only if it is the trandation
at some X, € H of amaximal linear subspace VWV ,i.e. H = W + X,.

The geometrical notions of co-linearity and co-planarity play a centra
role in the linear structures theory. Their generaization is expressed in
terms of “linear dependence’ asfollows:

3.7. Definition. For any (finite!) set of vectors x; ,..., X, € £, and any

system of scalars ay,...,a, €I, the expression

o1 Xy + Qo Xo +...+ O Xp ,
which equals another vector in £, is called linear combination of these

vectors. The set of all linear combinations of the elements of a subset
Ac L iscaled linear span (or linear cover) of A, and it isnoted Lin A .
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If there exists anull linear combination with non-null coefficients, i.e. if
A1 X+ X +...+ 00Xy = 9
holds for at least one o, # O, then the vectors Xi, X,,..., X, are said to be
linearly dependent (or aternatively, one of them linearly depends on the
others). In the contrary case, they are linearly independent.
Family <7 = {xe L:iel } is caled independent system of vectors iff

any of its finite subfamily is linearly independent. If such a system is
maximal relative to the inclusion, i.e. any xe £ isalinear combination of

some X, €7, ixel, k= 1n, thenitis caled algebraical (or Hamel) base
of L. In other terms, we say that <7 generates £, or Lin 7 = L .

3.8. Examples. a) The canonical base of the plane consists of the vectors
i=(1,0) and j=(0,1); sometimes we note i and j, while in the complex
plane we prefer u= (1, 0) and i = (0, 1). Similarly, 93 = {i, j, k}, where
i=(1,0,0), j=(0,1,0) and k=(0,0,1), represents the canonical base of R* .
Alternatively, we frequently note i = e;,] = &, and k = e; (sometimes
with bars over).

b) System @Ja’={(5ij)j=L—n:i= 1,n}, where
5 = 0 i.f i.;tj.
1 ifi=j

isthe Kronecker’s symbol, is a base (named canonical) inT™". Explicitly,
%={@1,,...,0,(0,1,...,0), ...,(0,0,...,1}.
c) The space of al polynomials has a base of the form
{1,t, 5., 1"...},
which isinfinite, but countable. If we ask the degree of the polynomials not
to exceed some ne N*, then a base of the resulting linear space consists of

{1,t, .., 1.
d) Any base of R, considered as alinear space over 9, must contain
infinitely many irrationals, hence it is uncountable.
3.9. Theorem. If 93, and 93, arebasesof L , and 73, isfinite, namely
card 93, =n e N*, thencard 93, = n too.
Proof. In the contrary case, let us consider that

%’12{61, ez,,en} and %zz{fl, f2,...,fm}
are two bases of £, and still n<m. We clam that in this case there exist a

system of non-null numbers Ay, Ay, ..., Ay € I', such that
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klfl + 7\42 f2 + ---+7mem =9,
which contradicts the fact that 93, is linearly independent . In fact, since
P, isabase, it generates 93, , i.e.

n
fi= > a;e
j=1

for al i= 1 m. Replacing these expressions of f; in the above combination,
and taking into account the independence of 93, , we obtain the following

homogeneous system of linear equations
ap A tap A+t A A =0
aphtaph +..+tapin=0

a.ln )\/1 +a2n )\/2 +...+ a(nn 7\4m = O .
This system really has non-null solutions since h<m. &

This theorem shows that the number of elements of abase is an intrinsic
property of the considered linear space, i.e. it is the same for any choice of
the base. In particular, if some base of £ isfinite/ infinite, then any other

base is also finite / infinite. In other terms, this theorem is the background
of the following important notion:
3.10. Definition. If alinear space £ contains infinite systems of linearly

independent vectors, then £ issaid to be a space of infinite dimension. If
L contains only finite systems of linearly independent vectors we say that
L isfinite dimensional, and the maximal cardinal of such systems (which
equals the cardinal n e N* of any base) is called the dimension of £, and it
iIsnoted n=dim L .

3.11. Theorem. Any change of base in a finite dimensional space is
represented by a non-singular square matrix.
Proof. If oo/ ={€e,, &,..., €} isthe“old” baseof £, and DB ={ff>,..., .}

is the “new” one, then the change o7 — 93 is explicitly given by the

n -

formulas f, = Ztijej , Where i=1,n. This is the exact meaning of the fact
j=1

that the change of base is “represented” by the matrix (tj))e M, (). In

short, this transformation may be written in the matrix form

(& &...e) ()" =(ff2... f) ,
where T denotes transposition (i.e. interchange of rows with columns); note
the dimensions of the involved matrices, namely (1, n)(n,n) = (1, n).
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We claim that matrix (t;) isnon-singular, i.e. Det (t;) =0. In fact, in the
contrary case we find a system of non-null numbers A4, ..., A, like in the
proof of theorem 1.3.6. (thistime m= n), suchthat A,e, + ...+ A,e,= 9.
Such a relation is still impossible because the elements of any base are
linearly independent. &

3.12. Remarks. a) The above representation of the change o« — 93 is

easier expressed as amatrix relation if we introduce the so called transition
matrix T = (t;))T . More precisely, the line matrices formed with the
elements of oo/ and 93 are related by the equality

(el ... en) T= (flfz fn) .
b) Continuing the idea of representing algebraical entities by matrices, we

mention that any vector x e £ is represented in the base 8={gq:i= 1n}

by a column matrix of components X = (X; X ... X,)T . Thisrepresentation is
practically equivaent to the development X =x; e + Xo & +...+ X, €,
hence after the choice of some base 23 in £, we can establish a 1:1

correspondence between vectors X e £ and matrices X e M 1(T) .

c) Using the above representation of the vectors, it is easy to see that any
matrix A e M, (I') definesafunction U : £ — L, by identifying y = U(X)

with Y =A X. A remarkable property of U isexpressed by the relation

U(ax + By) = a U(X) + B U(Y) ,
which holdsforany x,y e £L anda ,Be I',i.e. U “respects’ the linearity.

This specia property of the functions, which act between linear spaces,
iIs marked by a specific terminology:
3.13. Definition. If X’ and Y are linear spaces over the same field I, then

any function f: X—» Y iscaled operator; in the particular case Y =T,
we say that f is a functional, while for X = ) we prefer the term

transformation . The operators are noted by bold capitals U, V, etc., and the
functionals by f, g, etc.
Anoperator U: X — ) issaidto belinear iff itisadditive, i.e.

Ulx+y) =UX) +U(y), VX, ye X,

and homogeneous, that is
U(ax) =a U(X), VxeX ,and Va el .
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These two conditions are frequently concentrated in one, namely

U (ax + By) = a U(X) + B U(Y) ,
which is considered valid for any x,y e X and o, Be I' . The set of all

linear operators between X’ and ) isusualy noted by (X, )) .

The linear functionals are similarly defined, and X* = Z (X, I) isthe

usua notation for the space of al linear functionals on X . Alternatively,
X* iscdled algebraical dual of .
3.14. Examples. 1) If X =T"and )Y =T for some n, m N’, then any
operator U : X’ — ), which is represented by a matrix, is linear. More
exactly, thereexists A= (ay) € Mny(I), likein the above remark 1.3.12.,
such that y= U(x) means that

n -
Vi= > ay X, forany i= 1, m,
k=1
where X = (Xg, Xo, +.., Xo) @andy = (Y1, Y2, -+, Yim) -
In particular, any function f: T" — T of values
f(X) =a; Xy + a, % +... +a, X,
iIsalinear functional.
2) Let X =C'(I) bethe space of al rea functions which have continuous

derivativeson | , and Y = Cg(l) be the space of al continuous functions

onl,wherel =(a, b) c R (see aso chapter IV below). Then the process of
deriving, considered as an operator D: X — Y, represents a linear operator.

In fact, because
dx
= D(x) = )(/: —
y=D( o
means D(X)(t) = x'(t) at any t e(a, b), the linearity of D reduces to the

rules of deriving asum and a product with a scalar.
3) Let X =Y = Cx(K) be the function spaces from above, where this

time K=1[a, b] c R, andlet A: K x K- be continuous on K * relativeto

each of its variables (but uniformly in respect to the other). Then the
operator of integration | :X’— Y isaso linear, where y =1(X) means

¥(9) = [PA(s t)x(t) t .
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In particular, the correspondence expressed by
XOX > y= j:x(t)dtel“
defines alinear functional on X’ (see also part I1).
4) If X=(L,<.,.>)isascaar product space over I (see also 8l1.3.),

theneach y e £ generates alinear functional f,: £ — I', of values

fy (%) = <x,y>.
5) Let Sbe an arbitrary nonvoid set, for which X = F(S denotes the

space of al functions x :S —>T'. To each teS we may attach a linear
functional f.: X — I', defined by f; (X) = x(t) .

The algebraical organization of (X, )) represents the starting point in

the study of the linear operators, so we mention that:
3.15. Proposition. (i) < (X, V) is alinear space relative to the internal

addition, defined at any x € X by

(U+V)(¥)=UX+V(X),
and the multiplication by scalars (from the same field I'), given by
(AU)(X) =1 U(X).
(i) Z (X, Y)isan agebrarelative to the above operations of addition and

multiplication by scalars, and to the internal composition, defined by
(VoU) (x) = V(U(x)
at any X e X . Thisalgebrahas an unit element.

Proof. (i) (Z(X, ), +,.) verifiesthe axioms of alinear space.
(i) (Z£(X, ), +, o)isaringinwhich

(AV) o (uU) =Ap (V-U)
holds for any A, pue I', and U,V € Z (X, )). The unit element, noted 1 ,

and called identity, is defined by 1(x)= x. &

The proof of the following propertiesis aso routine.
3.16. Proposition. If X’ and ) are linear spaces, and U: X - ) isa

linear operator, then:
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1) Thedirect image of any linear subspace £ c X, i.e.
U(L)={y=U() eY: xe L},

Isalinear subspace of ).

i) Theinverseimage of any linear subspace M c Y, i.e.
Us(M)={xeX:UX) eM},

isalinear subspace of X .

i)  Uisinvertibleiff its kernel (nucleus), defined by
Ker (U) ={ xe X : U(X) =0} = U< (0),

reducesto 9 € X, or more exactly, to the null subspace{ 3}.

Several genera properties of the linear functionals and operators can be
formulated in “geometric” terms, being involved in the so-called equations
of the linear manifolds, as follows:

3.17. Theorem. If fe X*\{0} ,and keI, then

H ={xe X: f(X) = k}
is a hyper plane in X7, and conversely, for any hyper plane H < X there
exists f e A*\{0} ,and keI, suchthat xe H iff f(x)=k.
Proof. Forany xq € H it follows that

L=H-x%=f(0)
is a linear subspace, hence H is a linear manifold. We claim that L is
maximal. In fact, we easily see that £ # X because f= 0, hence there exists

ac X \ L, where f (a)#0. Therefore, at any xe X, we may define the

number A = RCY , and the vector y = x—Aa. Sincef (y) =0, it follows that

f(a)
ye L, sowe may conclude that
X =Lin(L u{a}),
I.e. £ isamaximal subspaceof X .

Conversely, let H beahyper planein X, xo e H,and L ="H — X, .
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Then £ isamaximal linear subspace of X' ,i.e. X\ L =, and for any
ae X\ L thereisaunique decomposition of xe X, X =y + Aa, where
yeL and A e I'. On this way we obtain a functional f: X’— I' , which
attaches a number A e I' to each xe X, according to the above

decomposition, i.e. f(X) = A .Itiseasy toseethat f islinear, soit remans
to show that
H ={ xe X: f(X) = f(X)}.

In fact, if xe H, then x =y + Xo for some yeL, hence from f(y) = 0 we

deduce that f(x) = f(xo) . Conversely, equation f(x) = f(X;) leadsto
y=X—=X e L =1(0),

e Xe L+ X=H . &

Going back to the problem of representing linear operators, we mention
its simple solution in the case when they act on finite dimensional spaces:

3.18. Theorem. Let Z={g:i=1n} and ¢={f : j= 1, m} be bases of
the linear spaces X’ and ) over the same field T, such that xe A, and

ye) arerepresented by the matrices X, respectively Y. If U: X—» Y isa

linear operator, then there is aunique matrix Ae M ,,o(I") such that

y= U
iIsequivaentto Y= AX. Inshort, U isrepresented by A.
Proof. By developing each U(e) in base ¢, we obtain

m N
Ue)= > a;f;, i=1n.
j=1
Evaluating U at an arbitrary x= x;e; + ...+ X,€, Yyields

n m m n
U(X) = in[Zauf-] = ZKZainiij :
-1 \j=1 j=1\i=1
The comparison of this expression with y= U(X) =y1f; + ...+ ynf, leads
to the relations
n
Y = Ziaijxi, J=1m.
1=

If wenote A= (a; ), where a; = a;, i.e. A=(a;)T, then the above relations
between the components take the matrix form Y = AX. >
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3.19. Corollary. Thevaluesof any linear functional f: X— T", where X is

afinite (say n-) dimensiona linear space, have the form

f(X) = a;x  + ...+ a, X,.
Proof. Take m=1, A= (a; ... a,), and X = (X; ... Xy)T in the previous
theorem, where ¢'={1}. &

It is remarkable that algebraical operations with operators correspond to
similar operations with the representative matrices. More exactly:
3.20. Proposition. Let X and ) be asin the above theorem 3.18.

a) If U,V e Z(X, ) arerepresented by A, B € M (), then U+V is

represented by A+B ;
b) If A e Mpun(D) represents Ue & (X, ), then LA represents AU for

any Ae I';
c) LetUe £ (X, Y) be represented by Ae M ,1(I") as before, and let Z

be another liniar space over the samefield I', wheredim Z = peN" .

If Be Mn(I) represents Ve (Y, Z) relative to some base of =,

then BA represents VoU .
Proof. The first two assertions are immediate. Even property c) isadirect
consequence of the above theorem 3.18, since V-U(X) = V(U(X)) is
equivalent toY= AX,and Z= BY,i.e. Z= B(AX) = (BA)X. &

Because any representation (of vectors, linear operators, functionals,
etc.) essentially depends on the chosen bases, it is important to see how
they change by passing from a base to another.

3.21. Theorem. Let T e M, (I') represent the transition from the base o</

to A inthelinear space L of finitedimensionn.

a) If X represents a vector xe £ in the base o7, then X = T * X

represents the same vector in the base 93 ;
b) If alinear operator U:L — L isrepresented by matrix A in the base

oo/, and by B in 93, then the following equality holds:
B=T'AT.
Proof. a) According to theorem 11 and remark 12 from above, the change
of oo/ into 93 is represented by a non-singular matrix T = (t;)T € M (),

in the sense that the numbers t;; occur in the formulas
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n N
fi= Zt”ej f i:l,n,
j=1

which relates g € o7 to fi € 9. By replacing these expressions of f; in
the developments of an arbitrary x € £ in these two bases, namely

X € .t Xl = X, fp o+ X,
we obtain X = TX , hencefinally X = TX.
b) Lettheactionof Ue Z(X, )), thatis y= U(X), be dternatively

expressed by Y =AX in base <7, respectively by Y =BX in base 23 .
According to the part @), wehave X = T X, and Y =T Y, wherefrom
wededucethat T™Y = BT " X. Findly, it remains to equaize the two
expressionsof Y, namely TBT X = AX, where X is arbitrary. >

The linear operators are useful in comparing linear spaces. In particular,
it is useful to identify those spaces which present only formal differences,
which are said to be isomorphic. More exactly:

3.22. Definition. Let X and Y belinear spaces over the same field I'. We

consider them isomorphic iff there exists alinear operator Ue < (X, ),

which realizes a 1:1 correspondence of their elements. In such a case we
say that U isan isomorphismof Xand ) .

Establishing the isomorphism of the finite dimensional spaces basically
reduces to the comparison of the dimensions:
3.23. Theorem. Two finite dimensional linear spaces X and )/, over the

samefield T", areisomorphiciff dmAX = dm) .
Proof. If dimAX’ =dim)’, then we put into correspondence the vectors with

identical representations in some fixed bases.
Conversdly, let U be an isomorphism of these spaces, and let us note
dmX =n,and dm) =m. Since U. X— Y redizes an injective linear

correspondence, it maps X into a linear subspace of ), and carries any
base of X into a base of U(X’). Consequently dim U(X) = n<m. But U is

also surjective, hence there exists U ™, which is linear too. Applying the
same reason to U ™, we obtain the opposite inequality m<n. Consequently
weobtan m=n. &>
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Because each particular representation of an operator depends on the
chosen bases, knowing the intrinsic (i.e. independent of base) elements and
properties has an extreme importance. In this sense we mention:

3.24. Definition. Number AeI” iscalled proper (or characteristic) value
of the linear operator U: £ — L iff thereexistsx=0 in £ such that

Ux = AX.
In this case x is named proper vector of U, and
L ={xe L:Ux=2Ax} =Ker(U-Al)

iIsthe proper subspace of U, correspondingto A .

3.25. Remark. The study of proper values, proper vectors, etc., leads to
the so-called spectral theory (see [CR], [CI], etc.). One of the starting
points in this theory is the notion of spectrum of a linear operator. More
exactly, the spectrum of U consists of those A <T" for which operator U — Al
isnot invertible. If £ has afinite dimension, the study becomes algebraic,

I.e. it can be developed in terms of matrices, determinants, polynomials,
etc., by virtue of the following:

3.26. Theorem. Let £ bean-dimensional linear spaceover I', and let U
be alinear transformation of L. If matrix Ae M (') represents U, then

A el isaproper value of U iff it isaroot of the characteristic polynomial
Pa (X)) = Det (A-Aly) ,
where |, isthe unit matrix of order n . The corresponding proper vectors
are represented by the non-null solutions of the homogeneous system
(A-Alp)X=0.
The proof isdirect, but useful as exercise.

Because any complex polynomial has at least oneroot in C, it follows that:

3.27. Corollary. The linear operators on complex linear spaces of finite
dimension have at least one proper value (respectively one proper vector).

Of course, there exist linear transformations of real spaces, which have
no proper vectors, since their characteristic polynomials have no root in R

(e.g. the rotation of the real plane). Anyway, al these facts do not depend
on the base because:

3.28. Theorem. Let £ bealinear spaceover I', and let U:£L — L bea

linear transformation of L. If two matrices A, Be M (") represent U,

then their characteristic polynomials coincide.
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Proof. According to theorem 1.3.21.b, if T represents the change of base,
then B= T AT . Consequently,

IB-AMu[= | TTAT=T M T = | T A-ML T,
where |A standsfor Det A. Because | T || T|=1, it follows that

|B'Mn|=|A'Mn|- <>

Replacing A by Ain A - Al,, makes no sense; however, we may evaluate
Pa (A), for which we have:
3.29. Theorem (Cayley-Hamilton) Each sguare matrix A € M, (I)

vanishes its characteristic polynomial.
Proof. Let us note the characteristic polynomial of A by

Pa(A) =ap+ay A + ... +a, A",
and let A* (L) be the adjoint matrix of A - Al,, . We remember that A*(A) is
obtained by transposing A - Al,,, and replacing each element by its algebraic
complement, which represent the former two of three operations in the
calculus of the inverse matrix. Consequently, we have

(A-Aln) A*(R) = Pa@d) In .

Because the matrix value of a product generaly differs from the product
of the values, we cannot replace here A by A. However, asimple evaluation
of the degrees shows that the adjoint matrix has the form

A*(L)=Bg+ By A+ ...+ By AM .
The identification of the matrix coefficients leads to the relations:

ABo=aly
A B]_ — BO = In
A Bn-l - Bn-2 = an1 In
—Bri=anln.
Multiplying by appropriate powers of A, and summing up the resulting
relations gives Pa(A) = O, . &

3.30. Corollary. The n™ power of every n-dimensiona matrix linearly
depends on its previous powers.
Proof. We havea, = (-1)" #0in
PA(}\.) —autayArt+... + an}\,n ,
and PA(A) = On . <>
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PROBLEMS §1.3.

1. Show that the set of al rectangular matrices, which have two rows and
three columns, with elements in I, forms a linear space. Write a basis of
this space, and identify its dimension. Generalization.

Hint. Prove the axioms of a linear space. Take matrices with a single non-

null element in the base. The dimension of M, () is nm.

2. Provethat e, =(2,1,-1),e,=(1, 2,0), and &5 = (1, -1, 3) are linearly
independent vectorsin R®, and find the coordinates of x = (5, 0, 1) in the

base {ey, &, e3}.

Hint. Condition A, e, + A, & + A3 €3 = 0 (respectively = X) reduces to an
homogeneous (respectively non-homogeneous) system of linear equations
with a non-null determinant.

3. Show that the set of solutions of any homogeneous system of m linear
equations in n unknowns, of rank r, is a linear subspace of R", which has

thedimension d= n—r . Conversely, for any linear subspace £, for which
dimL=d, there exists asystemin n unknowns, of rank r = n—d, whose
solutions exactly fill L .

Hint. Select r equations in r unknowns, which has non-null determinant,
and construct £ asthe linear span of the resulting solutions. Conversely, if

{e, &,..., &} isabase of L, then noting & = (¢&j1,&j2,.--,€in) for any

i =1,d, the equations take the form X, & + Xp &2 +... + Xn&in = 0.

4. Show that any hyper planein R* isdefined by three of its points

Pe= (%, Yi» Z, k=13,
and identify the linear functional that occurs in its equation. Generalization.
Hint. Write the equation of the plane in the form

1 x vy z
1 x5 Y1 2z
1 X, Y2 2

1 X3 Y3 Z3
The generalization refersto ninstead of 3, or C instead of R .

=0.
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5. Find the dimension and write a base of the subspace £ of R", wherethe

equation of £ is x; + X, +...+ X, = 0. In particular, for n=4, show that the

section of £ through the 4-dimensional cube of equations | x| < 1,i=14,

isa 3-dimensional solid octahedron, and find its volume.
Hint. B={e=(106.i,...,0n01) ;1 =1...,n1} isabase of £, and

dim £ = n-1. The section contains some vertices of the cube, namely

(1,1,-1,-1), (1,-1,1,-1), (1,-1,-1,1),
(-1,1,1,-1), (-1,1,-1,2), (-1,-1,1,1),
which are the intersection of £ with the edges of the cube. To see that

these points are vertices of a regular octahedron it is useful to evaluate the
distances between them.

6. Let X and Y betwo linear subspaces of the linear space £, and let us
note r = dmX’, s= dim), i= dm (X n V), and u = dim [Lin(X v Y)].

Provethatr + s=u+1i.
Hint. In the finite dimensional case, construct some bases of X’ and Y by

completing a base of X' "y . If at lest one of X’ and Y has an infinite

dimension, thenalso u= o .

7. Find the intersection of the straight lines a + Ax, and b + py, in R®,

wherea=(2,1,1,3,-3), x=(2,3,1,1,-1), b=(1,1,2,1,2), and y=(1,2,1,0,1).

Hint. Study the consistency of the system (in matrix form)
(2113-3)T+A(2311-1)"=(11212)T+u(12101)T.

8. Precise al the mutual positions of two planesin R", n>1.

Hint. Write the planesin the form
X ={x+oa+BbeR":a,p R},

Y={y+yc+3dd eR":y, R},

and study the consistency of the matrix system

X+oa+pb=y+yc+dd
in four unknowns a., 3, v, 6. If A isthe principal matrix of the system, Bis
the completion of A, and we note r =rank A, and r = rank B, then one of the
following six casesis possible: (r = 2,4) and (eitherr =r,orr =r +1). In
some cases we can describe the intersection in geometric terms.
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9. A linear operator U: R* ->R" isrepresented by the matrix
1 0O 1
3 -1 2
1 3 1
1 2 1 3

relative to some base 9B = {e, &, €, &}. Find the matrices, which
represent U in the bases:

() “={ey,6&, e

(i) 7 ={e,et e, etete et etestel;

(iii) & =the canonical base of R*.
Hint. Identify the transition matrices.

g O N

10. Let the operator U: M ;5(I") — M 25(I') be defined by

UA) =T AT,
where T isafixed non-singular matrix. Show that U islinear, and find the
matrix which represents U in the canonical base

0010 oz ollo 3

Show that U (as abinary relation) is an equivalence, but in particular, for

10 11
A= ,and B= ,
LI

we have (A,B) ¢ U, even if A and B have the same proper values.
Hint. Introduce the components of T. Since A is the unit of M ,»(I"), we

have U(A) = A= B for any nonsingular matrix T, even if
Det(A-Al) = Det(B- Al) .

11. Show that if the matrices A and B represent the same linear operator
U:T"— I'" indifferent bases, then:

(i) DetA=DetB,and

(i) Trace A=Trace B.

int. Usethefactthat B= T AT holds for some non-singular transition
def. n
matrix T e M,q(I), and take Det . Express Trace A = > a; interms of
i=1
proper values of A, taking into account the relations between the roots and
the coefficients of the characteristic equation, Det (A-Al) =0.
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12. Anayze whether the following matrices

1111 6-5-30
A:11-1-1 _ 3-2-2 0
1-1 1-1| 2-2 00
1-1-1 1 0 001

reduce to adiagonal form by a change of bases. Find the new bases and the
corresponding diagonal form.
Hint. Consider that these matrices represent some linear operators on R* in

respect to the canonical base €, and look for a transition matrix T, such
that T AT, respectively T BT arediagona matrices. In particular, if
»B={1=01100), f,=(1,0,1,0), f3=(1,0,0,2), f,=(1,-1,-1,-1)} ,

Isthe new base, then matrix A transforms into

2000

0200

0020

000-2

Matrix B cannot be reduced to a diagona form. Alternatively we may

study whether relation U(X) = Ax holds for four linearly independent
vectors (i.e. U hassuch proper vectors).

13. Establish the general form of alinear functiona f: I'—1I", whereI is

either R or C.

Hint. TakeabaseinT', e.g. 93 = {1}, and apply theorem 3.18 from above.
Theformisf (z) =k z, wherek =f (1).

14. Reduce the rotation of angle 2. in the plane to arotation of angle o and
acentral symmetry.
Hint. Apply the Cayley-Hamilton theorem to the matrix

A= | GOS® sina
—sina cosa )’
which represents a rotation of angle o . The condition PA(A) = O, becomes

A2 =(2cosa) A—ls,
where A? represents a rotation of angle 2o .
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Mathematical Analysis is definable as a combined study of two types of
structures, namely algebraical and topological (from tonwc = place). This
Is visible at the very beginning, when the neighborhoods of the points are
defined in spaces already organized from the algebraic point of view, most
frequently in linear spaces. The topological structures are necessary in the
definition of alimit, which represents the main notion of the Mathematical
Analysis. In the chapters of this theory, mainly dedicated to convergence,
continuity, to differential and integral calculus, we study several particular
cases of limits,

The elements of topology, which are presented in this section, will be
grouped in two parts: the former will be devoted to the general topological
notions and properties; the second concerns spaces where the topology
derives from some particular structures (e.g. norms or metrics).

§1.4. Part 1. GENERAL TOPOLOGICAL STRUCTURES

We assume that elements of analysison R are already known, and we
take them as a starting point. We remind that the neighborhoods of a point
xe R are defined using the notion of interval,

(& b)={EcR:a<c<bh},

which derives from the order of R . More exactly, aset VcR issaid to bea
neighborhood of x iff thereexists a,beR suchthat x<(a,b) cV.
Alternatively, instead of (a, b) we may use a symmetric interval centered
at x, of radius € >0, whichis
(X, €) ={yeR: X—¢g <y<x+¢}.
If we try to introduce a similar structure in C, which represents another

very important set of numbers, we see that this technique doesn’t work any
more, since C has no proper order, compatible with its algebraic structure.

The aternative definition is obtained if the symmetric intervals from above
are replaced by discs (balls, or spheres) relative to the usual norm
(modulus) on R, namely

I(X,e) =9X &) ={yeR:|x-y]|<e}.
Using the modulusin C, the notion of disc (sphere, ball) of center z and
radiusr > O, issimilarly defined by
Szr)={CeC:|C-z|<T}.
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The topology of C can be specified by the following:
4.1. Definition. Set Vc C iscaled neighborhood of ze C iff there exists
r>0, suchthat Vo Szr).

The family of al neighborhoods of z will be noted by (). The
structure of C, realized by defining the family 9(2) of neighborhoods for
each ze C, is called Euclidean topology of C .

4.2. Remark. So far, we have two examples of topologies, which concern
two of the most usual sets of numbers. They are similar in many respects,
especialy in the role of the modulus, which turns out to be the Euclidean
metric. Being derived from Euclidean metrics, the resulting topologies are
called Euclidean too. The construction of a topology attached to a metric
will be studied in more details in the second part of this section. For now it
IS important to make evident those properties of the neighborhoods, which
are significant enough to be adopted in the general definition.

4.3. Proposition. The systems of neighborhoods, corresponding to the
usua (Euclidean) topologies on R and C, satisfy the conditions:

[N4] xeVforeach V e 7(X);

[No] If Ve7(x) and UV, then Ue 71(X);

[N3] If U,V eZ1(X),then UnVe Y1X);

[N4] Forany Ve 71x) thereexists We 7(x) suchthat for all yeW we

have Ve 71y).
Proof. The former three properties are obvious. For [Ng], if VoS, r), then
we can take W= S(x,%),since S(y,%)gv for all yeW. S

Because properties [N;] —[N4] hold in plenty of examples, they are taken
as axioms in the “abstract notion” of topological structure, namely:
4.4. Definition. Let S=@ bean arbitrary set. Any function

T:S->P(27(S)),
which attachesto each X ¢ S asystem of neighborhoods of x, noted

©(X) = V(X),
is caled topology on S iff 9(X) satisfies the above conditions [N1] — [N4]

at each x e &S. The forthcoming structure on S is called topology, and S,

endowed with this structure, is said to be a topological space; it is most
frequently noted asapair (S, 1).
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4.5. Examples of topological spaces:

(i) The Euclidean T (i.e. R or C) from above.

(i) TheEuclideanT™", neN" , and generally any metric space.

(i) Let (S, <) beatotally ordered nonvoid set, which has the property:

VxeS Jda,beS suchthat a< x<b,

and let the intervals (a, b), [a, b), etc. be defined like in (R, <). Then the

following notations make sense:
Ye(X) ={Vc S : 3a,be S suchthat xe(a, b) cV};

71(X) ={Vc S: 3aeSsuchthat (a,x] <V} ;
P (X) ={Vc S : 3beSsuchthat [x, b) cV};
P5(X) ={Vc S: 3acSsuchthat xe(a, ») cV};
V() ={Vc S: 3be Ssuchthat xe(«,b) cV}.

Each of these families satisfies conditions [N;] — [N4], hence each one
can be considered system of neighborhoods. The corresponding topologies
are respectively called:

e FEuclidean (or topology of open intervals) if t(x) = 7 (X) ;
e topology of half-intervalsto theleft if ©(X) = 71(X) ;
e topology of half-intervalsto theright if t©(X) = % (X) ;
e topology of unbounded intervalsto theright if t©(X) = 75 (X) ;
e topology of unbounded intervalsto theleft if t(x) = Y« (X) .
In particular, we may consider S = R, endowed with its natural order, or

S =R? with its lexicographic order, etc.

(iv) Let (D, <) beadirected set, and let o be an element subject to the
single condition oo ¢ D (in addition, the order < is frequently extended by

considering that oo is the greatest element). Wenote D =D u{«}, and we
claimthat function 8 : D —» 22(22(D)), expressed by
{VcD:xeV} if xeD
0(x) = _
{V cD:V o{w}u(d,—),deD} if x=oo

represents atopology on D.

Such topologies on directed sets are caled intrinsic, and they are tacitly
involved in the theory of convergence of generalized sequences (nets, in
the sense of definition 1.1.15). In particular, N is a directed set, and we
may remark that the above neighborhoods of « are used to express the
conver gence of a sequence.
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(v) Onany nonvoid set S we may consider two “extreme”’ cases, namely:
e thediscretetopology 14 (X) ={V<cS:xeV}, and
e therough (anti- discrete, or trivial) topology t; (X) ={S} .

These topologies are extreme in the sense that 14 (X) is the greatest family
of neighborhoods, while 7, (X) is the smallest possible. We mention that one
sense of discreteness in classical analysis reduces to endow the space with
its discrete topology 14 .

From the notion of neighborhood, we may derive other terms, which
form the “vocabulary” of any topological study, asfor example:

4.6. Definition. Point x is interior to a set A iff it has a neighborhood V
such that Vc A. The set of al interior points of A is caled the interior of
A andit isnoted A, A°, or 1(A).Wesay that Aisopen iff A= A.

Point y issaid to be adherent to aset A iff Vn A= O holds for arbitrary
Ve 7 (y). The set of al adherent points of A forms the adherence (or the
closure) of A, whichisnoted A™, A, or a(A). In the case when A= A, we
say that A is closed.

We say that z is an accumulation point of A iff An(V\{z}) =< for dl
Ve 7 (2). The set of al accumulation points of A is called derivative of A,
anditisnoted A, or 5(A).

Point w is named frontier (or boundary) point of A iff both AnV = J,
and CA~V=J for any Ve 7’(w). The set of all such points forms the
frontier of A, whichisnoted A", or 0A .

Constructing the interior, adherence, derivative, and the frontier of a set
IS sometimes meant as the action of some topological operators, namely:
1 = interior, o = adherence, & = derivation, and ¢ = frontier.

4.7. Proposition. Family & of al open setsin the topologica space (S, 1)

has the following properties:
[Gl] ©,Sey

[G)] A Be 5= AnBe ¥ ;
[Gs] A e fordl iel (arbitrary) = U{A:iel }e Y.

Conversely, we can completely restore topology t in terms of .

The proof is directly based on definitions, and therefore it is omitted, but
the inexperienced reader may take it as an exercise.

A dual proposition holds for the family of closed sets, which, instead of

[G,] and [Gs], refers to finite unions and arbitrary intersections. A similar
study involves the topological operators, as for example:
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4.8. Proposition. The operator 1: 2?(S) — 2°(S) hasthe properties:
[1] 1 (S)=S§;

[12] 1(A) c A, VA€ 2(S);

[ls] 10 (A)=1(A), VA€ P(S);

[l 1(AnB)=1(A) n1(B), VABe2(S).

Conversely, each 1, which satisfies [1]-[14], uniquely determines t .

The proof is direct, and will be omitted. The most sophisticated is [I3],
which is based on [N4]. We may similarly treat the adherence. The duality
open / closed, interior / adherence, etc. can be explained by the following:
4.9. Proposition. The following relations hold in any topological space:

(i) xeA’ < xe(CA) ~,and yeB~ < ye(CB)°;
(i) C[uA)] = alC(A)] , and Cla(A)] =1[C(A)] ;
(iii) Aisopen < CA isclosed;

4.10. Derived topologies. a) Topological subspaces. Let (S, 1) be a

topological space, and let 7 # & be a subset of S. We say that 7 is a
topological subspace of S if each x € 7 has the neighborhoods
T X)={U=VN7T:Verux}.

For example, the Euclidean R is atopological subspace of C.
b) Topological products. If (Sy, t1) and (S», 1) are topological spaces,

and 7=8:x S, then the product topology of 7 is defined by
T (XY)={Wc7:3U et(X), V €1(y) suchthat U x V cW}.

This construction can be extended to more than two topological spaces. In
particular, C = R*, and R" , where n >2, are topological products.

c) Topological quotient. Let ~ be an equivalenceon S, and let 7= S/~ be
the set of equivalence classes. A topology t on S is said to be compatible

with ~ if ©(X) = t(y) whenever x ~ y. If so, we can define the quotient
topology of 7~ which attaches to each class X the neighborhoods

i (X)={V cT:VeEr)}.

Simple examples can bedonein C = R? , and R" .
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§1.4. Part 2. SCALAR PRODUCTS, NORMS AND METRICS

In this part we study those particular topologica spaces, which occur in
the classical construction of a topology, based on some intrinsic structures
of these spaces. In particular, we shall explain the scheme

Scalar product = Norm = Metric = Topology,
where = means “generates’. Of course, we are especially interested in
such a construction whenever we deal with linear spaces.

4.11. Definition. If £ be alinear space over I', then functiona
<.,.> LxL->T

Iscalled scalar product on £ iff the following conditions hold:
[SP] <ax+ By, > =a <x,2>+ B <y,z>, VX V,2ze L, a, Bel (linearity);
[SP,] <x,y>=<y,Xx>, VX yel (skewsymmetry; = conjugation);
[SPs] <x, x> > 0at any xe L (positiveness);
[SPs] <x,x>=0(el') & x=0(e L) (non-degeneration).

Thepar (L, <.,.>)iscaled scalar product space.

If I' = R, the second condition becomes an ordinary symmetry, since the

bar ~ stands for the complex conjugation. Condition [SP,] is implicitly
used in [SP;], where <x, x> R isessentid.

4.12. Examples. If £ =R, then obviously <x, y> = xy isascalar product.
Similarly, if £ =C, wetake <(,z>=( z. Thecases £ =R?’and £ =R?

are well known from Geometry, where the scalar product of two vectors is
defined as “the product of their length by the cosine of the angle between
them”. The analytic expression of this scalar product in R?is

<X, Y>=X1Y1t XoYot X3Ys,
and it can beextendedtoI'", Vn eN*, by the formula

<X Y> = X Y1+ Xo Yo + et X0 Vi -
The finite dimensional space £ =T'", endowed with this scalar product,

or with other derived from it structures, is qualified as Euclidean.
A dlight generalization of these products is obtained by putting some
weights a; > 0,..., o, > 0 therein, nar_nely
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The Euclidean scalar product is naturally extended to sequences in T, if
appropriate conditions of convergence are assumed. The definitionis

X Y> = TanXn Yn
n=1
for any pair of sequences x, yeI'™™, where sequence o = (a,) of strictly

positive terms represents the weight of the respective scalar product.
If we remark that the n-dimensional vectors are functions defined on a
finite set {1, 2, ..., n}, and the sequences are functions defined on N, we

may extend the Euclidean scalar products from above to functions defined
on compact intervals [a,b] cR . More exactly, the scalar product of two

functions f, g :[a, b] —» T, isdefined by
b _
<f,g>= [a(®) f (t)g(t)dt
a

where o :[a, b] > R*, represents the weight function. Of course, adequate

conditions of integrability are assumed, e.g. a., f, g € Cr([a, b)), etc.
The following properties are frequently used in the calculus:
4.13. Proposition. If (£, <.,.>) isascaar product space, then:

(i) <x,0> =<0,x>=0 forany xe L ;

(i) <xy+z>=<xYy>+<x2z> forany x,Yy,ze L ;

(iii) <x, ay>= a<x y> forarbitrary x,ye £ and aecl .
The proof isdirectly based on the definition.

4.14. The fundamental inequality. (Cauchy-Buniakowski-Schwarz) |f
(L,<.,.>) isascadar product space, then for al x, ye £ we have

|<x,y> [ < <x x> <y, y> *)

with equality iff x andy arelinearly dependent.

Proof. According to [SP,], for any AeI” we have

TA)=<x+ Ay, x+Ay>2>0.

<X,y >
<Y, y>
obvious equdlity | <x, 0> ' = 0= <x, x> -0. For x= Ay we obviously have
equality in (*) ,i.e. [A <y, y> F = A4 <y, y>°.

Conversely, if we suppose that (*) holds with equality for some x= 0=y,

If y =0, thenwereplace . = — in T. Otherwise, it reduces to the

then for Ao = — <%X2 it follows that T(Ao) = 0. Consequently, according
<Y, X>
to [SP,4] ,wehavex+ Agy=0. &
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Now we can show that the scalar products generate norms:
4.15. Definition. Functional || - || : £ >R, , where L is alinear space

over I, iscdled norm iff it satisfies the conditions:
[N4] ||x]|=0 iff x=0 (non degeneracy);
[No] || Ax||=|A||X|| forany x € £ and AeI” (homogeneity);

[Na] [[x+ Yyl <|I[x|I+]ly]l fordlx,ye L (sub-additivity).
Correspondingly, the pair (L, || - ||) is named normed linear space.
4.16. Corollary. Any scalar product space (L, <., .>)isnormed by

| x|[= V< X x> .
Proof. The functiona ||| is well defined because of [SP3]. It is no
difficulty in reducing [N] and [N;] to [SP4], [SP.] and [SP,]. Finally, [N3]
Is a consequence of (*), because
Ix+ Y[ = <x+y,x+y> = <x,x>+2Re <x, y> + <y, y> <
<IxIF+2]<x y>[+yIF < (IxI+ 1Y)
The equality in [Ns] holdsiff the vectors are linearly dependent. &

4.17. Remarks. (i) There exist norms, which cannot be derived from
scalar products, i.e. following the above corollary. For example:
e The sup-norm, acting on the space Cr ([a, b]) of all continuous
functions on the closed interval [a, b] R, defined by
I T llswp = sup {| f(t)[ : t[a, b]}; and
e The L' —norm, defined on the space L' ([a, b]) of equivalence classes
of absolutely integrable functionson [a, b] R, defined by
b

[#= ]It et

a
(i) Thereisasmpletest for establishing whether a given norm derives or
not from a scalar product, namely checking the formula

Ix+ y P+ 1Ix=yIF =201 xIF+ 11y [P).
If this equality is satisfied, and L isacomplex linear space, then

<X y>= 2(Ix+y[P=lIx=y P +illx+iy [ =i [ x-iy )
iIsascalar product that generates|| - || . For real linear spaces we have:
<X y>=2(Ix+ylF-lIx=ylIP).
(ii1) Inany real scalar product space (£, <., .>), function
n. (L0 x (£ \{0}) > [0,7]cR,
expressed by
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<X y>

Xyl
defines the measure of the angle between two non-null vectors x,y e L.

H. (X y) =arccos

In fact, u_ iswell defined because of (*).

The notions of norm, angle, and orthogonality, introduced in the next
definition, represent the starting point of the Euclidean (metric) geometry
on any scalar product space (£, <.,.>),including R".

4.18. Definition. Two elements x, ye £, where (£, <., . >) isascaar

product space, are said to be orthogonal iff <x, y> = 0. In this case we
notex Ly, i.e. sign L stands for orthogonality as a binary relation on L.

More generally, aset of vectors &= {xe L:iel}, where | isan arbitrary

family of indices, is called orthogonal systemiff x L x whenever i=] .

Two sets A, Bc £ are considered orthogonal (to each other) iff x Ly

holds for arbitrary xe A and yeB. Inthiscasewenote A L B.
The orthogonal complement of A is defined by

A-={ye L:x Ly for all xeA}.

4.19. Proposition. Every orthogona system of vectors is linearly
Independent.
Proof. Let usconsider anull linear combination of non-null vectors
Cix 1+ Cx+..+ Cx,=0.
Toshow that C,=0 foral k=1n , we multiply by X, and we obtain

Cx|* =0, where |x %= 0. &

An immediate consequence of this property establishes that every
maximal orthogonal system formsabase of L .

4.20. Proposition. (Pythagoras formul@) If {x;, X,..., X,} IS an orthogona
system, and xX= X; + X +...+ X,, then

2 < 2
I = 2pd”
Proof. Inthe development of <x, x> wereplace <x;, x> by Oif i = k,
and by x| if i=k. &
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The next level of generality refersto metrics:
4.21. Definition. Let S be an arbitrary non-void set (generally non-linear).

A functional p: SxS—R. iscadled metricon S iff:

[M{] p(X,y) =0 < x=y (non-degeneration);
[M2] p(x, y)=p(y,X) foranyx,y e S (symmetry);

[M3] p(x, Y) < p(X,2) + p(z,y) foranyx,y,zeS (sub-additivity).
Thepair (S, p) forms ametric space. The values of p are named distances.

If instead of [M;], we have only p(X, X) = 0, then p is said to be a pseudo-
metric (briefly p-metric), and (S, p) iscalled pseudo-metric space.

Condition [M3] is frequently referred to as rule of triangles. Later we
will see that the (p-) metrics are directly used to construct topologies, and
thisrule has an essentia contribution to this construction.

4.22. Examples. 1. If S=L isalinear space, and || .|| isanormonit,
then p(x, y) = ||x-y|| is a metric. In particular, if £=T", then its Euclidean

metric is obtained on this way from the Euclidean norm, namely:

pP(X,Y) =\/Zn:|xk - Y|<|2 :
k=1

2. On non-linear spaces we cannot speak of norms, but it’s still possible to
define metrics, e.g. by restricting some metric of £ (linear) to a non-linear

subset S L. Sometimes linear spaces are endowed with metrics that do

not derive from norms, as for example s;, which consists of all sequences
inT". Infact, functional q defined for any sequence x = (x,) by

21 [X

a1 2" 1+ x|

isn'tanorm (sinceq(AX)=| A | q(X) 1), but p(x, y) = q(x—Yy) isametric.

3. Let S be an arbitrary non-void set, and let p : SxS - R, be defined by

q(x) =

0 if x=y
X, y) = _ :
Pix.Y) {1 if xzy
Then (S, p) is a metric space, and even if S isalinear space, p cannot be

derived from a norm. Because p generates the discrete topology on S (see

the example 1.4.5.v), it is usually named discrete metric.
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Now we show how p-metrics generate topologies, i.e. we describe the
intrinsic topology of a p-metric space. This is a very general construction,
but in principleit repeats what we know in R and C .

4.23. Theorem. Let (S, p) be a p-metric space, and let us note the open

ball (sphere) of center xand radius r > 0 by
Sx,r) ={yeS: p(x,y) <r}.

Then function t: S — P(P(S)) ,expressedat any x e S by
T(X) ={VcS : 3r>0 suchthat Sx,r) c V},
isatopology on S, usualy called metric topology.
In addition, if p is a metric (i.e. p(X, y) = 0 = x = y), then (S, 1) is

separated, i.e. distinct points have digjoint neighborhoods. We mention that
there are plenty of separation axioms, and this one is known as [T,]; see
later its role in the uniqueness of the limit.

Proof. We have to verify conditions [N4]-[N4] from definition 1.4.1. In
particular we discuss [Ng4], since [N4]-[Ns] are obvious. In fact, let V be a
neighborhood of x , and §x, r) be a sphere contained in V. We claim that
the sphere W = %, r/2) fulfils [N4]. In fact, since for any ye W, we have
Sy, r/2) <V, weobtainV e 1 (y).

In particular, let p be ametric, and let x,y € S, x#y. Because of [M4],

we have p(X, y) =r > 0, hence §x, r/3) and Yy, r/3) are samples of digoint
neighborhoods, as asked by the condition of separation. >

4.24. Remarks. 1) We may conceive Mathematical Analysis as a two
levels theory: at a quantitative level it deals with numbers, vectors, and
metric measurements, but at a qualitative one it involves limits,
convergence, continuity, and other topological notions.

2) We frequently use the term Euclidean to qualify several things, namely:

the natural topology of R, C, and more generaly I'";

the scalar product <x, y> = ixkyk in[", ne N*;

k=1
thenorm || x|| = < x, x> of thesameT'";

the metric p(X, y) = || x—y|| of T".

The common feature of all these situations, which justifies the use of the
same terminology, is reflected in the forthcoming topology. In other words,
by an Euclidean topological space we understand the n-dimensional linear
spaceI' ", ne N*, endowed with the Euclidean metric topology.
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PROBLEMSS§I.4.

1. Compare the following topologies of R: te = Euclidean, to = rough,
1, =discrete, 1, = to the left, and 1, = to theright, where
T(X) ={V <cR: 3¢ >0suchthat V o(x—¢, X]},
(X)) ={V cR: 3¢ >0suchthat V o[x, X+ ¢)}.
Find and compare the corresponding families of open sets.
Hint. 1o < te=inf{7, .} < sup {7, 7} =11; 1 and 7, are not comparable.
The families of open setsare: Fo={J, S} for 19, &1 = P(S) for 14,

and arbitrary unions of intervals of the form (x —¢, X + €), (X — ¢, X], and
respectively [X, X + €), for the last ones.

2. Show that C is homeomorphic to the Riemannian sphere (i.e. thereis a
1:1 correspondence between the two sets, which carries neighborhoods

from one set onto neighborhoods in the other space. Study whether R hasa
homeomorphic copy on this sphere.

Hint. The small circular neighborhoods of points (= N) of the sphere are
stereographically projected into small discs in C. The pole N of the sphere

corresponds to o e C, and its circular neighborhoods correspond to sets of
the form C(0, r). A similar representation of R isimpossible since the two
points +co would correspond to the same N.

3. Let < betheproduct order on R", and let function o: R" — 22(22(R"))
be defined by:

o(X) ={VcR": 3 a, b eR"suchthat xe(a, b) = V}.
Show that o is atopology on R" (called product order topology), which is
equivalent to the product topology of R". Compare this topology to the
Euclidean one.
Hint. Because the order intervals have the form (a, b) = X{(ax, b): k=1,n},

it follows that Ve w(x) iff it is a neighborhood of x relative to the
Euclidean topol ogy.

4. Anayzethe following sets from atopological point of view:
A={n"':neN*}u(1,2] inR;
B={t+isint™':te(0,2/n)} inC;
C={(zt)eCxR:|zle(d,2],argz€[1, 2),teQN][1, 2]}.

Hint. Find the interior, adherent, accumulation, and boundary points, and

establish which of the given sets are open, closed, etc.

58



§ 4. Elements of Topology

5. Show that atopological space (S, 1) is separated, i.e.

[T)] VX yeS, x=y, 3U et(x), IV et(y) suchthat U NV =,

iff the diagonal & = {(x, X): xe S}, which represents the equality on S, is
closed relative to the product topology of S x S.

Hint. Replace the assertion “8 is closed” by “xzy iff (x, y)¢5”, and
similarly, “(S, 1) isseparated” by

“V(xy)go 3U e (x)andV € 7 (y)suchthat (UxV)né =",
where obvioudly, x= y holdsif and only if (X, y) S .

6. Letusnote A= U {A,: neN}, where A, ={1/2", 2/2" ,..., (2"-1)/2"}.
Show that A=10, 1], i.e. Aisdensein [0, 1], and interpret this fact in terms
of binary approximation of xe [0, 1] .

Hint. Divide [0, 1] in 2, 4, ..., 2" equal parts, and put either digit O, or 1,
according to the first or the second subinterval to which x belongs.

7. Let S be an arbitrary nonvoid set, ¢ : S—R be 1:1 (i.e. injective), and
p:AXA —R,beametricon A= ¢ (S) < R. Show that:

8) dyp 1 SXS—R., of valuesd,, (%, y) = p (9 (%), ¢ (¥)), isametric.

b)If S=R, ¢ (X) = F)\(x\ and p (X, y) = [x— |, then p and d,, aretwo

topologically equivalent metrics. Give an example when it is not so.
c) If card S <N, then for every metric d on S, there exist ¢ and p such

that d = d,, . Is such arepresentation of d always possible ?
Hint. a) Verify the conditions in the definition 1.4.21. b) Each Euclidean
sphere contains some sphere relative to p, and conversely. Am exampleis

X if xeR\Q
¢ (x) = .

n=a(x) if xeQ ,
where o isa 1:1 correspondence of Q with N.
¢) Aninjective function ¢ existsiff card S <N =card R.

8. Show that in any linear normed space (L, || . ||), the adherence éop of
the open unit sphere centered at 0, S, = {xe L [X|| < 1}, equas the closed
unit sphere & = {xe L: ||X|]| £ 1}. What happens in general metric spaces?
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Hint. Any point x from the boundary of S, , is adherent to the radius
{Ax: Le[0,1)} c Sy,
hence §; éop. Conversaly, if xis adherent to S5, we take ye S,,, where
IIvll < 1, and |X|| < |IXx = Y|l + |ly|]l- This property is not generally valid in
metric spaces (S, p), eg. S isthe metric subspace of the Euclidean R?,

S ={(xy) eR*:x*+y*=1ory=0}.

9. Let f,g:[-2 1] x[0, 3] >R be functions of vaues f(x, y) = X* + y?,

and g(x, y) = 2xy. Evaluate their sup- norms and the distance p(f, g).
Hint. Because functions f and g are bounded, it follows that the sup-norms
do exist. By connecting these functions to the notions of Euclidean distance
and area, we obtain the values

IIFll = sup{f(x, Y)I: (x, ¥) €[-2, 1] x[0, 3]} = (-2, 3), and

ol =—-9(=2.3) .
Since (f - g)(x, ¥) = (x—y)*, wefind p(f, g) = [If — gl| = 25.

10. Let S, ¢, p and d,, be defined as in the problem 7 b, and let v be a

prolongation of ¢ to R =R {40}, where v(— o) =—1and v(+wx) = 1.
Show that d,, , isabounded metric on S, and find out the form of the open

and closed spheres of center x (including x = +00) and radiusr.

Hint. S(+oo,r)=(l;—r, + o] for any re(0, 1), etc.

11. Let (£, ] .||) be anormed linear space, and let F be a linear finite
dimensional subspace of £. Show that for any xe L\F thereis x**e F

(called best approximation element) such that
[| X=x*|| = min {|lx-y]|: ye F'} .

Find the best approximation of x = exp in the linear subspace F of all
polynomials of degree 2, where £ = C,([0, 1]) isnormed by

1
If],2 =] f20et.
0

Hint. Because || . || derives from a scalar product, then
X* = Pr (),

I.e. (x —x*) L F, which furnishes x*. In particular, we have to deduce the

vauesof a, b, and csuchthat (e —at®*—bt—c) L{1,t, t?}.

60



CHAPTER |I. COVERGENCE

§11.1. NETS

The nets are a very important tool of the mathematical analysis,
especially when the sets where they are considered in, are endowed with a
topologica structure. Convergence is the main topic in this framework,
which is developed in terms of limit points, accumulation points, and other
topological notions. There exist particular properties of nets (eg.
boundedness, the property of being fundamental, etc.), which are studied in
metric spaces. More particularly, other properties need a supplementary
structure; for example, we can speak of monotony only if an order relation
aready exists, and we can operate with nets only if the space is endowed
with an agebraic structure, etc.

From a topological point of view, the notion of net is the most natural
extension of that of sequence. The study of the nets helps in understanding
the principles of the convergence theory, and more than this, it is effective
in the measure and integration theory. Therefore, we devote the first part of
this section to general aspects involving nets.

§11.1. Part 1. GENERAL PROPERTIES OF NETS.

1.1. Definition. Let (S, 1) be atopological space, (D, <) be adirected set,
and f :D —» & be a net (generalized sequence) in S. We say that f is
convergent tol €S iff for any Vet(l) there exists de D such that f (a)eV

whenever a>d.. In this case, we say that | isalimit of the net f, and we note
| = Iiénf = lim f(d),

d—w
f(d) —1, leLim f, etc.
where sign Lim f stands for the set of al limits. If Lim f # & we say that f
IS a convergent net; otherwise, if Lim f = &, f is said to be divergent.
In particular, if D =N, we say that sequence f:N - S isconvergent to

| eS,andwenote | = lim x, , X, =1, etc. (read | is the limit of (x,), or
n—oo

X, tendsto |, etc.), iff for any neighborhood Vet(l) there exists n(V)e N

such that n > n(V) = x,eV. The convergence and divergence are similarly
defined for sequences, meaning Lim f = &, respectively Limf = &
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We mention that, generally speaking, the limit points are not unique.
More exactly, the sets Lim f are singletons exactly in separated (i.e. [T,])
spaces. In addition, to each net we may attach other types of points, e.g.:
1.2. Definition. Let (S, 1) be atopological space, (D, <) be adirected set,

and f:D - S beanetin &S. We say that Xe S is an accumulation point of

thenet fiff the following condition holds:
vVet(X) vaeD 3beD,b> a suchthat f(b) V.
The set of al accumulation points of anet f isnoted Acc f .
In particular, the same notion makes sense for sequences.

1.3. Examples. a) The construction of a definite Riemannian integral is
mainly based on convergent nets. To justify this assertion, let us remind
this construction. We start with a bounded function f : [a, b] — R, and we

consider partitions of [a, b], which are finite sets of subintervals
O={[X 1, %] :k=1,2,...,ma=x<X<..<X=b}.
The normof & is defined by v(8) = max { Xk — X1 : [ X1, %] €6}.
Then, for each partition, we choose systems of inter mediate points
E@)={&k € [X1,x] €d:k=1n} .
Finally, we define the integral sums attached to 6 and &(d) by

61(5, £(8)) = élf () (% — Xe1) -

We say that f is integrable on [a, b] iff for all sequences (5, of partitions,
the corresponding sequences c; (o, (5y)) of integral sums have a common
l[imit when v(35,) — 0, not depending on the systems on intermediate points.

By definition, this limit represents the Riemannian integral of f on [a, b],
which is usually noted

1= [2F (x)dx= lim o (8n, EGw) -

It is easy to see that instead of this construction, which involves a lot of

sequences, we better say that the net o;: D — R is convergent to |, where
D isthe directed set from the example 1.1.8.(iii) 4.
b) Let sequence f : N— C be defined by f(n) = i". It iseasy to seethat f is
divergent, but it has four accumulation points, namely + 1, and +i . There
are also four constant subsequences, i.e. (i*), (i**Y), (i**?), and (i**),
which obvioudly are convergent to these points. In this example we may
remark that the set of values, that is {f(n): neN} ={1,i,-1,—i} hasno
accumulation point, hence we have generally to distinguish between
accumulation point of a sequence (net) and accumulation point of a set (see
also the next example).
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c) Let D = NxN* bedirected by the relation
(mn)<(p,g) & m<p,
and let f:D—RR? be defined by f(m, n) = (m,%). If we endow R? with its

Euclidean topology, then any point of the form (m, 0) is an accumulation
point of theset (D), while Accf = .

d) The sequence g: N—R, expressed by g(n) = exp((-1)" n), has a single
accumulation point, namely Acc g = {0}, but Oz Lim g. More exactly, the set
Lim gisvoid, i.e. g isadivergent sequence.

e) The sequence h: N— T, of values h(n) = (-1)" n, is convergent if I' = C,
but it is divergent if I' = R, when Acc h = {+«»}. Thus, we may conclude

that the form of the sets Lim and Acc essentially depends on the space in

which the net is considered.
The study of accumulation points naturally involves the subnets and

their limit points:

1.4. Theorem. In the terms of the above definitions we have:

(i) Any limit of anet f is an accumulation point of f;

(i1) If the space (X, 1) is separated (i.e. [T,]), and thenet f hasat least two
different accumulation points, then f is divergent;

(ili) The element x isan accumulation point of the net f iff it isthe limit of

some subnet of f.

(iv) Every accumulation point of a subnet of f isan accumulation point of
the initia net f.

(V) Theset Acc f isaways closed.

Proof. (i) If Ver(X) determines some deD such that f(b) «V for dl

d<beD , then f(b) ¢V holds for some b>a , where a is arbitrary in the

directed set D .Consequently Lim f cAcc .

(ii) Let us suppose that {x, X} < Acc f, and still (by r.aa) Lim f = {¢},

where x= X, but possibly ¢= X, say. As for sure it remains ¢ # x e Acc f.

Using the fact that (X, t) is[T,], let us choose Ue t(¢) and Ve 1(X) such
that UnV = @. Because /= limf, there exists ac D such that f(b) € U for
al b>a, so f(b) €V is not possible for such b's any more, contrarily to the
supposition that xe Accf.
(iii) Let (E,<<) be another directed set, h: E—~D be a Kelley function (see
condition [s] in definition 1.1.15), and let the subnet g=f-h be convergent
toxeX. If V er(xX) and acD arefixed, then thereexist € , € <E such that
g(e) €V holds for all e>>¢€', and h(e)>a whenever e>>¢€” . Consequently,
if e exceedsboth e and €’ , thenf(b) eV, for b=h(e)>a, that isxeAcc f.
Conversely, if xeAcc f , then we may consider the set

E={(V, f(b) ez(x) x X: f(b) eV} ,
which is directed by <<, in the sense that

(V, f(b))<<(V',f(b'))=V <cVandb<b'.
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Then the function h: E—D, expressed by h((V, f(b)))= b, satisfies the
condition [s], hence g=f-h is a subnet of f. We claim that g converges to x.
In fact, if we fix aeD, then for any Ver(x) we find some (V, f(b)) <E
(where b>a is not essential any more) such that (V, f(b))<<(V’, (b))
impliesg((V', f(b"))) eV sinceg((V', f(b’))) = f(b’) eV’ V.

(iv) Let E, h, g be defined asin the above proof of (iii) , and let xeAcc g .To
show that xeAcc f , we choose Ve(X) and a< D, hence, using property [9]
of h, we are led to some ecE, such that h(e')>a whenever € >>e. Because
XeAcc g, there exists some particular € >>e such that g(€') <V, hence there
existsb=h(e') >ain D such that f(b) V.

(v) We have to show that Acc f cAcc f, because the contrary is always

true. In fact, if x e Acc f, Ver(x), and aeD, we may take W as in [N4],

hence Ve z(y) whenever ye W. Because ye Acc f, we deduce f(b) e W<V for
some b>a. &>

Some properties of the closed sets and operator “adherence” can be
expressed in terms of convergent nets, as for example:
1.5. Theorem. If Aisasubset of atopologica space (S, 1), then:

(i) xe Aiff thereexistsanet f : D— A, convergent to X;
(i) Alisclosed iff any convergent net f : D— A hasthelimitin A;

(iii) A =S (when Aissaid to be densein S) iff every xe S is the limit

of aconvergentnetf: D —A.
Proof. (i) If xe A , then for any V e 1 (X) there exists some xye VN A, and
consequently we may define the directed set D ={(V, xv): Ve 1 (X)} and the
net f: D— A of vaues f(V, xy) = xv. Obvioudly, f — X (see also problem 1).
Conversely, if anet f : DA (in particular a sequence, for D = N)

converges to x , then any neighborhood V e 1 (X) contains those elements

of Awhich arethetermsof finV, i.e. xe A.
(i) If Alisclosed, and f : D—A is convergent to X, then according to (i),

Xe A = A; in particular D = N is possible. Conversely, using (i), any xe A

isthelimit of anetin A . By hypothesisxe A, hence A = A.
(iii) Characterization (i), of the adherence, should be applied to arbitrary
pointsof S. &

1.6. Theorem. Let (X,) be a sequence in atopological space (S, t). If none
of its subsequences is convergent, then al the sets Gi= S \ { X, Xk+1, ...},

where ke N, are open.
By reductio ad absurdum, the proof reduces to the previous theorem, (i).
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§11.1. Part 2. SEQUENCES IN METRIC SPACES

1.7. Remarks. a) The study of generalized sequences (nets) is redundant in
metric spaces since the base 23(x) = { S(x, %): neN'} of neighborhoodsis a
countable set at each point xe S. More exactly, each property that involves

convergence of nets remains valid in metric spacesif we replace the nets by
seguences.

b) The notion of fundamenta sequence of numbers is essentially based on
the possibility of comparing the neighborhoods of different pointsin Q, R

or C. Generdly speaking, this comparison cannot be done in arbitrary

topological spaces because of the lack of a size of neighborhoods. Such a
size is ill available in metric spaces, where the radii of spherical
neighborhoods naturally represent it.
c) The property of boundednessis also meaninglessin a genera topological
space, but makes sense in the metric ones.

To build a more concrete image about the convergence in metric
spaces we will adapt the genera definitions to this framework.
1.8. Proposition. Let (S, p) be a metric space. A sequence (X,) in S is

convergent iff there exists somel ¢ S such that

Ve>03dng(e)eN, suchthat n>ny = p(x,,1)<¢

I.e. outside of any sphere centered a | there is a finite number of terms of
the sequence.
Proof. If t represents the topology generated by p, it follows that Ve t(X)

iIff Vo4, €) for some ¢ >0, so it remains to reformulate the definitions. <>
1.9. Definition. Let (S ,p) be a metric space. A sequence (X,) in S is said

to be fundamental (or Cauchy’s) iff for any € >0 there exists ny(e) e N such
that p, q = Ny(g) implies p(Xp, Xq) < €. We say that (S, p) is complete iff

“fundamental = convergent” holds for any sequence in S; in particular,

the complete normed spaces are called Banach spaces, while the complete
scalar product spaces are named Hilbert spaces.
A set A c S issaid to be bounded iff it is contained in some sphere,

I.e. thereexistae S andr > Osuchthat A ¢ Sa, r). We say that (x,) isa
bounded sequencein S iff the set {x,} of all valuesis bounded.
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1.10. Proposition. A necessary and sufficient condition for aset A < S to

be bounded isthat for any a8’ e S toexistsr’ >0suchthat A ¢ S@a’, r’).
Proof. The sufficiency is obvious. Conversely, if Aisbounded and a’'e S

IS chosen, then for any xe A we have
p(x, &)< p(x, @)+ p(a &) <r + p(a, a),
so that wemay taker’ =r + p(a, &). >

1.11. Theorem. In every metric space (S, p) we have:

a) Thelimit of any convergent sequence is unique;

b) Any convergent sequence is fundamental;

c) Any fundamental sequence is bounded.

Proof. a) The property is essentialy based on the fact that any metric space
IS separated, i.e. Ts.

b) If /= lim X, , then we may compare p(X,, Xm) < p(Xn, )+ p(£, Xm).

n— oo
c) If (x,) is fundamental, then for e= 1 there exists a rank ve N such that

n>v implies p(X,, X,) < 1, i.e. the set {X,+1, X,+2,...} 1S bounded. On the other
side the finite set { Xy, Xy, ..., X,} 1S bounded too. &>

Beside the general properties involving the accumulation points and
subsequences, in metric spaces we mention the following:
1.12. Theorem. If (S, p) is a metric space , and f : N— S is a sequence of

terms f(n) = x,, ne N, then:
a) Xe &S isan accumulation point of the sequence f iff

Ve>0VveNdn>v suchthat p(X,,X)<¢&;
b) If (x,) is fundamental and has a convergent subsequence, say Xp, >,
then x,— /¢ too;
c) (f(N)) < Accf,i.e. every accumulation point of the set {x,}, of values,
Is an accumulation point of the sequence.
Proof. a) We may replace V = S, €) and D = N in the definition of an

accumulation point of f.
b) p(Xn, £) — 0 because the distances in the greater sum

PO, £) < pO%ny Xn, ) +p(Xn, 4 £)
are tending to O too.
c) If xe(f (N))’, then for any keN we find some Xn, in f (N) such that

Xn, eS(x,1). Because the order ny<n,; can be easily assured, function
k— Xp, represents asubsequence of f . >
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By the following theorems we show how useful is the property of
completeness in scalar product, normed, and metric spaces. In particular, in
the proof of the next theorem we see the role of completeness when we
need to decompose Hilbert spaces into orthogonal subspaces:

1.13. Theorem. If (£, <., .>)isaHilbert space, then any closed linear

subspace S has an orthogonal complement, i.e. S® S+=L .
Proof. We have to show that for any xe L there exist ue S andve S+,

such that Xx = u + v. In fact, if xe S, we take x = u, and v = 0. Otherwise,

not

let s =inf{||x=y|: ye S} :'d(x, S) bethedistance of xto S, and let (y,)

be a sequence in S, which alows the representation § = lim|x—y,|.
n—oo

Applying the Beppo-Levi’s inequality to the terms of this sequence, namely
2 2
Iy = Yo < [x= Yol = 67 +lx= ym* - 82,
it follows that (y,) is a fundamental sequence (see [RC], etc., and some
geometric interpretations). Since £ is complete, and S is closed, there

existsu= limy, , ueS. Consequently, 8 = |x—ul, i.e. the distance 5 is
nN—oo

reached at u. It remainsto show that v= x—u e S+, i.e. <v, y> = 0 for any

ye S \{0}. Infact, according to the construction of u, we have

X = (u + 1) IP = <v =2y, v—dy > > [ x=u|f = <v,v>

2
for arbitrary A<T. In particular, for 1= <V.y> , We obtain —M >0,
<Yy, y> <y, y>
which obviously implies <v, y> = 0.
Because S~ S+ ={0}, this decomposition of x is unique. >

The next theorem is considered a geometric form of the fix-point principle
(see below), and represents an extension of the Cantor’s theorem [.2.17.
1.14. Theorem. Let (£, || . ||) be aBanach space, and let, for each neN,

S (%, o) ={X € £ & [x =g <1}
denote aclosed spherein L. If

1) the resulting sequence of spheresis decreasing, i.e.
S ) oS r) o.M 2.
i) r,—0,
then there existsaunique X e £ such that N{Sy (X, rn): NeN'} = {x}.
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Proof. It iseasy to see that the sequence (x,) isfundamental in £, whichis

complete, hence there exists X = limx, , and X e Sy (%, rr) for al ne N,
Because each closed sphere is a closed set in normed spaces (see problem
1.4.8), i.e. Sy (X ) = Sy (X, Fr), We Obtain X e Sy (X, 1) for al neN' .
Consequently, X e N{Sy (X, r): NeN'} .
If X~ would be another point in the above intersection, then
X=X 1< IX = X [[+1X = %[>0,

* %

hencex = X .

<&

Similar results hold in complete metric spaces, i.e. linearity is not
essential. The practical efficiency of these properties can be improved by
thinking the transition from one sphere to the other as the action of a
function. The specific terms are introduced by the following:

1.15. Definition. We say that function f : S— S, where (S, p) is a metric

space, is a contraction iff there exists a real number ce[0,1), called
contraction factor, such that the inequality p(f(X), f(y)) < ¢ p(X, y) holds at
arbitrary x, y ¢ S. Anelement X « S iscalled fix point of f iff f(x )=x.

1.16. Theorem. If (S, p) is a complete metric space, and f: S—>S isa

contraction, then f has an unigque fix point.
Proof. Let us choose some Xy € S. Generaly speaking, X, # f(Xo), but we

may consider it like zero order approximation of x . The higher order
approximations of X are recurrently defined by x,.1 = f(x,) for al neN.
We claim that the sequence (x,), of so-called successive approximations, is
fundamental. In fact, if we note p(Xo, X;) = 9, then, by induction, for any
neN we obtain p(X,, X+1) < ¢" 8. Thus, for any neN and p>1, we have:
P(Xny Xnt p) < P(Xny Xne1) Tov ot P(Xn+ po1s Xn+ p) < "3 +..+ PTG =
1-cP <0 c".
l1-c 1-c
The case 6=0 (or c=0) is trivia since it corresponds to constant sequences
of approximations. Otherwise, since lim ¢" = 0, for arbitrary £ > 0 there
exists Ny(e) e N such that p(Xa, Xn+p) <& Whenever nx ny(e) and peN’, hence

(Xn) is fundamental. Because (S, p) is complete, there exists X = nII_)rTO Xn

=c"d

which turns out to be the searched fix point. In fact, since
pOC, f (X)) < p(X, Xa) + (e, F (X)) = pOC, %) + p(f (X2)  F (X)) <
p(X, %) + € p(Xp1, X ) —0,

we deduce that p(x, f (X )) =0, hencef (X ) =X .
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Even if the above construction of X starts with an arbitrary X, , the
fix point is unique in the most general sense (i.e. the same for any
approximation of order zero, and for any other method, possibly different
from that of successive approximations). If X~ would be a second fix point
of f, different from x', then ) . o

0<p(x,x )=pF() f(x ) <cpXx,x )
would contradict the hypothesisc < 1. >

1.17. Remark. The interest in finding fix point theorems is justified by the
interpretation of the fix points as solutions of various equations. Applied to
particular metric spaces, especially to function spaces, the method of
successive approximations is useful in solving algebraic equations, as well
as more complicated problems like systems of differential, integral or even
operatorial equations (see [RI], [RC], [YK], etc.). The theoretical results
are essential finding approximate solutions by digital evauation within the
desired error. In particular, this theory represents the mathematical kernel
of the computer programs for solving equations. This explains why so
many types of fix point theorems have been investigated, and the interest is
still increasing, especially in more general than metric spaces, with the aim
of developing particular techniques of approximation.

To illustrate how the method of successive approximations works to
solve an equation, let us consider the following ssimple case:
1.18. Example. Evaluate the real root of the equation
X+ 4x—1=0
with an error lessthan 10 ~*.
The real root of this equation belongs to S = [0,1], and it can be

considered asafix pointof f: S—» &, where

f(x)= ¢+ 4)7".

In addition, according to Lagrange’s theorem, for any x<yin S,

p(F(9), f)) = 10 —f(y) 1= £ [ I x=y = 1T/ (&) | p(x, y),
where ¢ (X, y)c S . Because
1
8
at any xe S, it follows that f is a contraction of factor ¢ = 1/8. Starting, in

1F0) 1= 1 -2x|(¢ + 4) ™% <

particular, with x,= 0, we obtain 6 = p (Xo, X1) = %, hencefor n > 4 we
have the error less than

2

O =?8_” <1074

l1-c
Consequently, the searched approximation is x,.
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Because the complete metric spaces have a lot of convenient properties,
we have to analyze some of the most useful examples.

The complete metric space R. So far, we have seen that R is completein
order. This fact is a consequence of the Dedekind's construction (based on
cuts, compare to Theorem 1.2.12), and represents one of the conditions in
the axiomatic definition 1.2.14. In the following, we will show that R is a
complete metric space, relative to its Euclidean metric. This result will be a
consequence of some properties of R, already discussed in §1.2.

The following theorem is based on Cantor’ s theorem:

1.19. Theorem. (Cesaro-Weierstrass) Every bounded sequence of red
numbers contains a convergent subsequence.

Proof. Since (x,) is bounded, let a, beR such that a < x, < b for all neN.
If ¢ = (ath)/2, then either [a, c] or [c, b] will contain infinitely many terms
of the sequence. Let [a;, by] stand for that interval that contains infinitely
many terms. Dividing it in halves, we similarly obtain [a,, b,] < [a,, b,], and
so on. The resulting sequence of intervals obvioudly satisfies the conditions
in the Cantor’ s theorem (see 1.2.17), with a = . The needed subsequenceis
obtained by choosing a term of the initial sequence in [a, by in the
increasing order of indices. >

1.20. Corollary. For any infinite and bounded set AcR thereis at |east one

accumulation point (o is an accumulation point of A iff each of its
neighborhoods contains points of A, different from o).

Proof. We repeat the reason from the above theorem by considering A
instead of { X} . &

1.21. Remark. There are two aspects, which concur for a sequence to be
convergent, namely the relative position of the terms, and some “richness’
of the space to provide enough limit points. An example in which these
aspects can be easily distinguished is the sequence of rationa

approximations of /2, which looks like a convergent sequence, but in Q it

is not so because /2 ¢ Q. The notion of “fundamental sequence” is exactly

conceived to “describe the convergence without using the limit points’.
As a particular case of the definition 1.9. from above, we say that the
sequence (X,) In R is fundamental (or Cauchy), relative to the Euclidean

metric, if for every € > 0 there exists arank ng(e) e N, such that
n,M>ny(e) = | X —Xm|<E€.
According to the same definition, showing that R is complete means to
prove that each fundamental sequence in R is convergent, i.e. R contains
“enough” elements, which can play the role of limit points.
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The following properties of the sequences in R represent immediate and
simple consequences of the theorems 1.11. and 1.12. from above, in the
particular case S =R, and p(X, y) = |X—Y]|.

1.22. Proposition. In the metric space R, the following implications hold:
a) Every convergent sequence is fundamental;

b) Every fundamental sequence is bounded;

¢) If afundamental sequence (x,) contains a convergent subsequence ( X, )

and X, — 7/, thenaso x,— /.
The reader is advised to produce a particular proof in R.

Now we can formulate and prove the main result:
1.23. Theorem. Every fundamental sequence in R is convergent (or, in an
equivalent formulation, R is complete relative to its Euclidean metric).

Proof. According to the above property b), (x,) is bounded, so using the
above Cesaro-Weierstrass theorem 1.19., we deduce the existence of a
convergent subsequence. Being fundamental, the sequence itself has to be
convergent to the same limit. &

The complete metric space RP. Considering RP endowed with its usual

Euclidean metric, many genera properties from metric spaces will remain
valid for sequences in RP. In particular, R is another remarkable example

of complete metric space. To prove it, we have first to specify some terms
and connections with sequencesin R.

Let a sequence of pointsin RP, f : N—»RP, be defined by f(n) = x,, neN,
where X, = (%}, X2s..., X7). For each k = 1, 2, ..., p, function f has a
component function f,: N>R, defined by f(n) = x,* (the p sequences of

real numbersfy, f5,..., f, are called component sequences of the sequencef ).
The terms convergent, fundamental and bounded refer to the Euclidean
structure of R” . However, the properties involving the order of R cannot be

carried to RP, hence the Euclidean metric has greater importance in R,

The following theorem establishes the fact that the study of sequencesin
RP, p> 1 can be reduced to asimilar study of sequencesin R.

1.24. Theorem. If f isasequencein RP, of componentsfy, fy, ..., f, , then:
a) Sequence f is convergent and has the limit x = (X, X%, ..., X°) iff the

sequences f, f,, ..., f, are convergent and X = lim xX ,k=1,2, ..., p.
n—oo
b) Sequencef isfundamental iff all its components are fundamental

c¢) fisbounded if and only if al the component sequences are bounded.
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Proof. @) Let usremark that the following double inequality takes place:
1

P 2 P
‘xﬁxk‘s{z‘(xﬁxk)z} < Z‘xr'f—xk‘ :
k=1 k=1

If the sequence f is convergent to x , then for every € > 0, there exists arank
no(¢)eN such that d(x,, X) < ¢ holds for every n>nq(c), where d is the

Euclidean distance. Then, from the first inequality, it results that if n>ng(e),

then| . — x| < . Conseguently, x*= lim x ,forevery k=1,2,...,p, i.e
N—o0

al the component sequences are convergent.

Conversely, let us suppose that each sequence f, converges to x* ,
wherek =1, 2,..., p, and let € > 0 be given. For every € /p > 0, there exists
n(e) e N such as for every neN, n > n(e) we have | x, — x| < e/p. If we
notex = (x', X, ..., X’) and no(e) = max { ny(e), ny(e). ..., Ne(€)}, then

1
Bk
A, ) = | 3505 = x¥ <z\xn <pf=s
k=1 P
holds for all n>ny(g). Consequently, f is convergent and it has the limit x.
Points b) and c) of the theorem can be proved in the same way. >

1.25. Applications. According to point @) of this theorem, the limit of a
convergent sequence from RP can be calculated “on components’. For

example, the sequence {( - r':; 1+ )”)}neN* convergesto (0, 1, €) in R®,

Because the algebraic operations of addition and scalar multiplication are
realized on components too, we may extend these operations to sequences.
In addition, if f, g are two convergent sequences in RP, f(nN)=x,, g(n)=Yyx,
neN, then f+g is convergent and lim (X, + y,) = lim x, + limy,, and if

N—o0 N—o0 N—o0
ae R, then the sequence af isconvergent and [im (o x,) = o lim X,.
N—o0 N—o0

Using Theorem 1.24, we can prove the completeness theorem for R” :
1.26. Theorem. Sequence f in R” is convergent if and only if it is Cauchy,
i.e. RP is complete relative to its Euclidean metric.

Proof. The sequence f is convergent if and only if al his components are
convergent (from Theorem 1.24 &)). Because its components are sequences
of real numbers, and R is complete, the component sequences are

convergent if and only if they are Cauchy sequences. Applying point b) this
IS equivalent to saying that f is a Cauchy sequence. So, f is convergent if
and only if it is Cauchy, i.e. R” is a complete metric space. &
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The complete metric space C. We consider now the complex plane C,
endowed with the Euclidean metric d(z, ) = |z — 2|, 21, 2z €C. Togivea
sequence {z}ney IN C means to precise two sequences of real numbers,
namely {Xo}nen » {Yatnen » Where z, = x, + 1 y, . Because the Euclidean
metrics on C and R? coincide, i.e.

de(z, 2) = |z — 2| = \/(Xl - X2)2 +(y1 - Y2)2 = dp2 (%, Y1), (X2, Y2)),
it follows that we may treat C as a particular case in the theorems 1.24. and
1.26. from above. Consequently, the sequence {z.}.e IS convergent in C
(respectively Cauchy, or bounded) iff the real sequences {X.}ney » {Yntnen
have the same property. In particular, C isacomplete metric space.

The complete metric space my. Let AcR be an arbitrary set and let m, be

the metric space of al bounded real functions defined on A, endowed with
the uniform distance d(f, g) = sup {| f(X) —g(X)|; x € A}. We claim that:

1.27. Theorem. m, isacomplete metric space.

Proof. Let {f,} e be a Cauchy sequence in m,. Because

| fn(x) - fm(x) | = d(fn, fm)
holds at each x €A, it follows that {f.(X)} e are Cauchy sequences of real
numbers at each x e A. Since R is complete, these sequences converge to a

well-determined real number, depending on x, which we note f(x). In this
way we define afunction f: AR, caled punctual limit of {f.;} ey . We

haveto provethat {f.} e convergestof inthesenseof d, and fe ma.
Let ustake ¢ >0. Because {f} e IS @ Cauchy sequence, for ¢/4 > 0 there

exists ny(e) e N, such that for every n, m > ng(e) we have d(f,, f) <e/4,i.e.

| fa(X) — f(X) | < €/4 holds at every x A. On the other hand, because at

every xeAwe havef(x) = lim f(x), there exists my(e, X)e N such that
m—oo

| TrlX) = T(x)| < /4

holds for all m> my(e, x).
Now, let n> nyg(e) and x €A be arbitrary, but fixed. If me N satisfies both
m>ng(e) and m > my(e, X), then:
| () = F(X) | < | Ta(X) = Fm(¥)| + | fn(X) — F(X)| < e/4+ /4 = €/2,
and
[FOA < [FC) — fa O+ [ T () < &/2 + [ fr (X)].
Since f,e ma, it follows that fema. In addition, sup [f,(X) — f(X)|< &/2

xeA
implies d(f,, f) < &/2 < g, which means that {f.},c IS convergent in the
metric space my. To conclude, m, is acomplete metric space. &>
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PROBLEMS §11.1

1. Inthe topological space (S, t) we choose z; € S, and we define the set

D, ={(V,2):zeV er(z)},
where D isdirected by (V, 2) <(U, £) meaning U < V. Show that theg.s.
f:D —&, of termsf ((V, 2)) = z is convergent to 7, . Illustrate this fact by
drawing two copiesof S =C .

Hint. According to the definition of convergence, for every V e 7(z,) there
is(V,2) e D, such that for (V, 2) <(U, §) we have f (U, {))eV (see dso
the examples 1.1.8(iii)3, and I.1.16b).

2. Let (A, &) and (Y, n) be topological spaces, and let S = X x Y be

endowed with the product topology t. The canonical projections are noted
p: S— X and . S— Y, where p(X, y) = X, and q(x, y) =y. Show that a

g.s.f: D — S isconvergent to (X, Yo) iIff po f > Xxg and qe f — vy,

Hint. Use the form of the neighborhoods in the product topology t (see the
derived topology in 1.4.10.b), and apply the definition of the limit.

3.Letf: D —R beag.s. of real numbers, where (D,<) isan arbitrary set,

directed by <. Show that if
1. f isincreasing (relativeto < onD and<onR ), and

2. f(D) has an upper bound (in R),

then f isaconvergent sequence.
Hint. According to the Cantor’s axiom (see definition 1.2.14), there exists
the exact upper bound sup f(D) = Xy eR. It remains to show that f — X;.

4. Let (D, <) be adirected set, and let E be a nonvoid part of D. We say
that E isco-final in D iff

VaeD 3dbeE suchthat a<b.
Show that in this case the restriction f|E Is asubnet of theg.s. f .D—S.

Can E consist of prime numbersif we suppose D =N ?
Hint. The embedding h: E — D, defined by h(e) = e, satisfies the Kelley’'s
condition [s] in the definition 1.1.15. Consequently, f|E = f o h isasubnet

of f. The set of primesisinfinite, henceit is co-fina in N.
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5. Study the convergence of a sequence (X,) in the metric space (S, d) if:

a) The subsequences (Xzn), (Xon+1), @nd (Xsn) are convergent;
b) The subsequences (x.,) are convergent for all k>2 ;
c) The subsequences (X ) are convergent for all k>2 .

Hint. @ The sequences (Xzn) and (xz,) have a common subsequence, e.g.
(Xen), hence their limits coincide. Similarly, because (Xz:2n+1)) IS @ common
subsequence of (Xon+1) and (Xsn), it follows that (x,,) and (Xon+1) have the
same limit. Finally, each term x, is either in (Xn) or in (Xon+1).

b) and c). Take S = R, endowed with its Euclidean metric, and remark
that the subsegquence (xIDn ), where p, is the n™ prime number, may have no

term in the considered subsequences, hence (x,) may be divergent since at
least two distinct accumulation points are possible.

6. On the nonvoid set S, we consider the discrete metric (defined in §1.4.).
Show that (x,) is a fundamental sequence in (S, d) iff there exists a rank

N € N such that X, = X, whenever m, n > ny. Deduce that the metric space
(S, d) iscomplete.

Hint. Takee = % < 1linthedefinition of afundamental sequence, and use

the convergence of the constant sequences.

7. Let p be the Euclidean metricon S = R, and let ¢ : R—R be 1:1. We

note A = ¢ (R), and we define d,,, asin the problem 1.4.7, i.e.

dop (%, Y) =p (@ (%), @ (¥)).
a) Take e (x) =x[1+ |X]~* and show that the sequence (n) is fundamental

but not convergent relative to the corresponding metric d,, , .
b) Show that the real sequence (x,), of terms

1+% if niseven
X =
" 1-Z if nisodd

is divergent relative to the metric d,, , generated by
ax+b if xeQ
¢ (X = . ,a>0.
—ax+bif xeR\Q
c) Show that, if S = Q and ¢ : Q— N isahijection, then a sequence (x,) is
fundamental relative to the corresponding metric d,, iff it is constant
except afinite number of terms.
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Chapter II. Convergence

Hint. &) ¢ (n) and ¢ (M) are arbitrarily close to 1, hence aso to each other,
if the values of n and m are large enough.

b) Because 1 + LeQ and 1 - Z e R\Q, we have d, ,(x,, %») > 2a whenever

niseven and misodd.
c) If x # y, thend, ,(x,y) 21, since ¢ (X), ¢ (y) eN.

8. Show that in C we have:
a z,>0<z,|>0; b) z,> 220z, >|4and argz, > agZ].

, o N -
¢ Iim{l+i%) =cosa +isina .
n—oo n

Hint. @) Compare the definitions of alimit in R and C. b) Use the formulas
of |7 and argz. c) Evaluate

‘1+i%‘n = (1+ ‘:1—22)% —1and arg(1+i%)n = n(arctg%)—mc.

9. (Cesaro-Stolz Lemmain C) Let (z,) be a sequence of complex numbers,

and let (r,) be an increasing and unbounded sequence of rea numbers.
Show that the following implication holds

L Zo—2Z . Z
Il = lim&tl 2 3 |jim 2o

n—o i1 =y n—o Iy
and use it to find the limits of the sequences:

2, +2,+..+2,

- where z, -z ©)

m where 0= Zn — Z.
2| 12|
Extend this problem to the linear space R” , where p > 2.

Hint. Decompose the complex numbers in real and imaginary parts and
reduce the problem to R, where we may prove the stated implication by

operating with inequalitiesin the “c - ny(e)” definition of thelimit | .

a)% b)

10. Let (a,) and (b,) be sequences in the normed linear space (£, |-||), such

that a, — a and b, — b in the topology generated by |-|| . Prove that:

1. a,+b,>a+b 2 la,—>2la 3 |a,|—|a 4 (a,.by) —(ab)
whenever | -| is generated by the scalar product (., .).

Hint. Usetherelations: 1.|(a, + b,) — (a+b)| <|a, —a| + b, - b,

2|22 - 28 = |2 |an — & 3.[]an] - [a]| <[an - & and 4. |(an,bm) - {a,b)| <
< |(an,bm) = {an,b)| + [(an,b) - (a,b)| <[[an] |bm ~bf + Ja — [l .
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§11.2 SERIES OF REAL AND COMPLEX NUMBERS

The notion of series has appeared in practical problems, which need the
addition of infinitely many numbers. A nice exampleisthat of Achillesand
the tortoise: Let us say that Achilles runs ten times faster than the tortoise,
and between them there is an initia distance d. Trying to catch the tortoise,
Achilles runs the distance d in t seconds, etc. Since this process contains
infinitely many stages, it seems that Achilles will never catch the tortoise.
In reality, by adding all the necessary times, we still obtain afinitetime, i.e.

t+t/10+ /100 + ... = _t ot :
-1 9
according to the formula of the sum of a geometrical progression.
Another significant case is that of the periodica decimal numbers. For

example, summing-up a geometrical progression again, we obtain
0.2323...=0.(23) = §(1+ 1072+107+...) = E’.
100 99

In essence, the notion of seriesis based on that of sequence:
2.1. Definition. We call seriesin I" (which means R or C) any pair (f, g) of

sequences, where f : N— T defines the general terms of the series, aso
noted x, = f(n), and g: NI represents the sequence of partial suns, i.e.
Si= X+ X+ ..+ X = g(n).
Instead of (f, g), the seriesis frequently marked as an “infinite sum”
Xo+ Xg+ ..+ Xn+ oo = DX,

More exactly, we say that the series (f, g) is convergent to s, respectively
sisthe sum of the series, iff the sequence (s,), of partia sums, converges to
s, and we note

> Xy = lim s, =s.
n=0 N—oo
2.2. Remarks. @) In practice, we may encounter two types of problems,
which correspond to the similar problems about sequences, namely:
1°. Establishing the nature of the given series, i.e. seeing whether the series
IS convergent or not, and
2°. Searching for the value of the sums.

Establishing the nature of a series generally involves a qualitative study.
It is still essential in the practical use of the series, because the exact value
of sistoo rarely accessible, and we must deal with some approximations.
The computer techniques are obvioudy efficient, but even so, we need
some previous information about the behavior of the series. In other words,
from a practical point of view, the two aspects are strongly connected.
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Chapter II. Convergence

b) The notion of seriesinvolves an agebraic aspect, that isthe addition of n
termsin s,, and an analytical one, namely the limiting process of finding s.
Consequently, a good knowledge of operating with convergent sequences
from the algebraic point of view is indispensable. We recall that the case of
the real sequences is well studied in high school. It is easy to see that the
complex sequences have similar properties, i.e. if (zZ)ney @d (£ 1) ney are

convergent sequencesin C, then
o lim(z,+Cn)= lim z, + lim Cp;

N—o0 nN—o0 n—oo
e lim (z,-Cn)=(lim z)-(lim Cy),
nN—o0 N—o0 n—oo
. 1 .
e |im —=— ,Wherez, #0and lim z, = O.
n-oo Z, lim z, n—o
n—oo

Because we realize the addition of the series “term by term”, it follows
that the sum of two convergent series is aso convergent. The multiplication
and the quotient of seriesis more complicated (see definition 2.27. below).
c) Adding infinitely many numbers may lead to unbounded sequences of
partial sums, so we have sometimes to deal with convergence to infinity.
We consider that the situation in R is already known, including the
algebraic operations with + o, and the indeterminate cases. The problem
of infinity in C is usualy treated as one point compactification, and we

sketch it later in 8l11.1.).

Now, we start with some criteria (tests) of convergence, which we need
in order to answer the question about the nature of a series.
2.3. Theorem. (The general Cauchy’s criterion) The series > x, in T is

convergent iff for any &> 0 we can find ny(e) €N such that
|Xn+1+ Xpi2 * oot Xn+p|<5
holds for al n > ny(¢) and arbitrary peN.

Proof. The assertion of the theorem reformulates in terms of € and ny(e) the
fact that aseries )’ x,, is convergent iff the sequence (s,) of partial sumsis

fundamental. Thisisvalid in both R and C. %

2.4. Corollary. If aseries >’ x,is convergent, then x,— 0.
Proof. Take p =1 inthe above theorem. >

Because this corollary contains a necessary condition of convergence,
namely x,—0, it is frequently used to prove the divergence. We mention
that this condition is not sufficient, i.e. x,—0ispossible in divergent series,
which isvisiblein plenty of examples.

78



§ II. 2. Series of real and complex numbers

2.5. Examples. (i) To get the complete answer about the convergence of
the geometric series 3 2", ze C, we consider two cases:
e Ifg=|z|<1,thenz" -0, and consequently (s,) — s, where
no1 1-2" 1
= —> =
1-z 1-2
e If|z|>1, then the seriesis divergent because the genera term is not

tending to zero (as the above corollary states).
(if) To show that condition x,— 0 is not sufficient for the convergence of a

series, we may consider the harmonic series Z%. Obviously, x, = %—) 0,

but the seriesis divergent, since grouping the terms as
1 1 1 1 1 1 1
l+=+E+2)+(E+=+=+D) +..
2 3 4 5 6 7 8
each bracket is greater than 2.

Ss=1+z+...+z S.

From the general Cauchy’s test we may derive other theoretical results:
2.6. Theorem. (Abel’s criterion) Let >z, be a series of complex numbers,

which has a bounded sequence of partial sums, and let (g,) be a decreasing
sequence of real numbers, convergent to zero. Then the series > (z, - &) IS

convergent.
Proof. By hypothesis there exists M > O such that | s, | < M for al neN,

n
where s, are the partial sums of the series Y z,,1.e. s,= > z . Weclam
k=0
that the series ' (z, - ¢,) satisfies the Cauchy’s criterion 2.4. from above.
In fact, for arbitrary n, peN we may evaluate:
| ent1Zner + €m2Znsa oo F Enipa Zoepa + EnepZnepl =
| €nt1(Se1—5n) + €nv2 (S —Sw1) + oot Enip (Swp — Swpa)| =
|_5 1S+ (5n+1_ 8n+2) S#rt ... F (8n+p-1 _5n+p) Swp T Entp Sn+p| <
SM [8n+1 + (8n+1_8n+2) + + ( 8n+p_1_8n+p) + 8n+p] = 2 M 8n+1.

According to the hypothesis ¢,—0, for any € > 0 we can find ny(g)eN,

such that n > ny(e) implies 2M ¢,.1 < €. To conclude, for any € > 0 we have

| ent1Zner + €nioZea + .. + En+p1Zntp1l T Enip Zn+p| <Eg
whenever n > n(e) . <

2.7. Corollary. (Letbniz' test for alternate series). If (g,) is a decreasing
sequence of positive real numbers, which tends to zero, then the alternate
series Y (-1)"¢,, is convergent.

Proof. The partial sums of the series > (—-1)" are either —1 or 0, hence the
sequence (s,) is bounded. &
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Chapter II. Convergence

2.8. Examples. (i) The alternate harmonic series Zﬂ IS convergent

since we may take g, = 1/n in the above LeibniZ' criterion.

(if) The condition that (e,) is decreasing is essential in Abel’s criterion,
I.e. if e,—0 non-monotonoudly, the series may be divergent. For example,
let us consider the serieS'

1 1,
-5 gt QT
where the positive terms form the harmonic series (divergent!), and the
negative ones belong to ageometrical series of ratio 1/5.

(ii1) The condition that (e,) is decreasing is still not necessary. As an

example, the alternate series

1—i i—i o+ t 1 + ...

2 @ 2 (2n-1° (2n)?

Is convergent even if €,— 0 in anon-monotonous fashion.

2.9. Remark. In the particular case of the series with real and positive
terms, there are more criteria. For example, in such acaseit is obvious that
the convergence of a series reduces to the boundedness of its partial sums.
The following theorems 2.10 — 2.20 offer other instruments in the study of
convergence. These theorems can also be used for some series of complex
numbers, viathe series of moduli (see later the absolute convergence).

2.10. Theorem. (The integral Cauchy’s criterion) Let function f : R, >R,

be continuous and decreasing, and for all ne N, let us note:

X =F (), $1= 3%, andy, = If(t)dt
k=0

Then the series ) x,, is convergent iff the %quence (V) is bounded.

Proof. Theintegrals exist because f is continuous. Since f is decreasing, for
al k=1, 2, .... and te[k-1, K] we have f(k-1) > f (t) > f(k). Integrating
these inequalitieson [k—1, k], we obtain

k

Xer 2 [ F()dt > x.

k-1
Consequently, adding those relations that correspondto k=1, 2, ..., n, we
obtan s,—X, > Yn > S, — X0, I.€. (S,) and (y,) are smultaneously bounded.
Since x, > 0, it follows that (s,) is increasing, hence its boundedness equals
its convergence. &

2.11. Example. The generalized harmonic series Y. 1/n* , where a. > 0, is
obtained by using the above sampling process fromf :[1, +o0) >R, , where
f(t) = 1/t* It iseasy to see that for any ne N we have
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§ II. 2. Series of real and complex numbers

Yn
1t llnn if =1

So we see that (y,) is bounded if a.e (1, +o), and unbounded if ae (0, 1],
hence the generalized harmonic series is convergent if and only if o >1.

1 1-ay
=nﬂ:{a_l(1n )Ifail.

From the already studied convergent or divergent series we can deduce
the nature of some other series using comparison criteria:
2.12. Theorem. (The 1% criterion of comparison) Let Y x,and 3y, be

series of positive real numbers, for which there exists a rank n, e N such

that n > ny implies x, < y, . Then the following implications hold:

a) . Yy,convergent = > X, convergent, and

b) > x,divergent = >y, divergent.

Proof. The inequalities between the general termsimply similar inequalities

between the partial sums. Finally, the convergence of a series with positive
terms, reduces to the boundedness of the partial sums. >

2.13. Theorem. (The 2™ criterion of comparison) Let > xpand >y, be
series of positive real numbers such that

Xnt1 o Ynil

Xn  Yn

holds whenever n is greater than some rank npe N. Then (as before):
a) . Yy,convergent = > X, convergent, and
b) > x,divergent = >y, divergent.
Proof. For simplicity, let us suppose ny = 1. The inequality assumed in the
hypothesis |eads to:

ﬁ>Q>....>ﬁ>.... .
Yoo Y2 Yn o
If g denotes the first quotient, then x, < gy, for al neN, hence we can
apply the former criterion of comparison. >

2.14. Theorem. (The 3" criterion of comparison; the limit form) Let D Xn
and Yy, beseries of positive real numbers, y, > 0, such that there exists
¢ =1m(X,/Ypn)-

N—o0
Then the following cases are possible:
a) If 0< ¢ <+, then the two series have the same nature;
b) If ¢ =0, then [y, convergent = > x,, convergent]; and

c) If ¢ =+ o, then [} y,divergent = > x, divergent].
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Chapter II. Convergence

Proof. a) By hypothesis, for any positive ¢, there exists a rank ng(e)eN,
such that ¢7—¢ < (Xy/y,) < ¢+ ¢ holds for al n > ny(g). In other words, we
have (/—¢€)y, < X, < (¢ + €)Y, , hence we can use theorem 2.12.

b) Smilarly, for any € > 0, there exists arank ng(¢)e N, such that n > ny(e)
impliesx, <eVy,.

c¢) For any M > O there exists ng(M) e N, such that for all n > ny(M) we have
Xn < M- Yn - <>

2.15. Theorem. (D’ Alembert’s quotient criterion) Let us assume that > X,

Isaseries of positive real numbers, and let us note g, = Xp+1/%n -

a) If thereexistsng eN and g < 1, such that g, < q holds for al n > ng, then
the seriesis convergent;

b) If there exists npe N such that g, > 1 holds for all n > ng, then the series
isdivergent.

Proof. @) For simplicity, we may suppose np = 1. Multiplying the relations

Xe1 < Q% for k=1, 2, ..., n, we obtain that x,.1 < q" - x;. Consequently,

our seriesis compared with a convergent geometric series of ratio q < 1.

b) The sequence of general terms does not tend to zero. >

2.16. Corollary. (D’ Alembert’s criterion in the limit form). Let > x, bea

series of strictly positive real numbers, and let us note g, = X,+1/X, . If there

exists ¢ = lim g, €R, then the following implications hold:
N—oo

a) ¢ <1 = convergence, and
b) ¢ >1 = divergence.

If ¢ =1 we cannot decide about the nature of the series.
Proof. By hypothesis, we have r—e< q, < ¢ + ¢ for sufficiently large n.
The above theorem 2.15.a) workswith q = ¢ + ¢ < 1 to prove a). Similarly,
in the case b), we may takeq, > ¢r—e >11in 2.15.b).

To show that the case ¢ = 1 isundecided, we may exemplify by harmonic

series Zn% , whichisconvergentat o = 2, and divergentata = 1. <

2.17. Theorem. (Cauchy’sroot criterion) If > X, is aseries of positive real

numbers, then the following implications hold:

a) If thereexistsngeN and q (0, 1), such that Q/x7 <qgfor al n>ny, then
the seriesis convergent; and

b) If Q/XT, >1 holds for infinitely many indices, then the series is divergent.

Proof. @) For n > n, we have x, < q", where > q" is a convergent geometric

series. The assertion a) follows by theorem 2.12.
b) The genera terms does not tend to zero. &
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§ II. 2. Series of real and complex numbers

2.18. Corallary. (Cauchy’s root criterionin limit form) Let > x,, be a series

of positive real numbers, for which there exists ¢ = lim /x,, .
N—o0

a) If ¢/ <1, then the seriesis convergent; and
b) If ¢ >1, then the seriesis divergent.
The case ¢ = 1 isundecided.
Proof. For any e >0wehave /—¢ < /X, < ¢+ ¢ if nislarge enough.

a) If r<1,thenasoq= ¢+ ¢e<1for someconveniently small g, asin case
a) of the above theorem.

b) If ¢>1, then we similarly use the inequalities1 < (¢—¢)" <X, .
If ¢ =1, we may reason as for corollary 2.16. &

2.19. Theorem. (Raabe-Duhamel’s test) Let ' x, be a series of strictly
Xn
Xn+l
a) If thereexistngeN andr > 1, such that r, > r holdsfor al n > ng, then

the seriesis convergent;
b) If there is some ng €N such that r, < 1 holds for al n > ny , then the

seriesisdivergent.
Proof. a) For simplicity, let us assume that np = 1. If we noter = 1 + ¢, for
some ¢ > 0, then the inequality in the hypothesis takes the form

€ X1 < KX —(K+ 1) X1, VkeN.
By adding the inequalities correspondingto k = 1, 2, ..., n—1, we see that

the sequence of partial sumsis bounded, hence convergent.

positive real numbers, and let usnote r, =n( -1). We clam that:

=

b) If n > ny, then the inequality from hypothesis leads to X+l _ ns

which realizes a comparison with the harmonic series. >

2.20. Corollary. (Raabe-Duhamel’s criterion in limit form). Let > x, bea
series of strictly positive real numbers, for which there exists

(= lim n(="-_1) eR, .

n—o  Xpi1
a) If ¢>1, then the seriesis convergent, and
b) If ¢ <1, then the seriesisdivergent.
The case ¢ = 1 isundecided.

Proof. For any e > 0wehave ¢ —e <r,< ¢ + ¢ if nislarge enough.

a) Wetakee suchthatr = ¢/ —¢ > 1, and we use part @) from 2.19.

b) Weintroduce r,< 7 + ¢ <1, intheorem 2.19.b).

For ¢ =1, see problem 7 at the end of this section. &
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Chapter II. Convergence

2.21. Remark. In practice, it is advisable to use the tests of convergencein
the order of simplicity and efficiency, which has been adopted in the above
presentation too, i.e. from 2.15 to 2.20. The reason of this procedure comes
out from the fact that the Cauchy’s test is stronger than the D’ Alembert’s
one, and the Raabe-Duhamel’s criterion is the strongest of them. In fact,
beside proposition 2.22 below, which compares the quotient and the root
tests, the Raabe-Duhamel’s test is working in the case X..1i/X, —1, i.e
exactly when these two criteria cannot decide.

The above criteria (in the presented order) refer to slower and slower
convergent series. Therefore, at least in principle, list of criteria can be
infinitely enlarged, since for each series there exists another one, which is
slower convergent (see problem 8 below, [BC], [SG], etc.).

The following proposition illustrates the difference of efficiency between
the Cauchy and D’ Alembert’ s tests.

2.22. Proposition. Let (x,) be a sequence of strictly positive real numbers.
If 1lim (Xp,1/%,) there exists, then lim [/x, aso exists, and they are
N—o0 N—o0

equal. The converse implication is not true.
Proof. If wetake z,=In x, andr, = nin the Cesaro-Stolz lemma (see [SG],
[PM4], or problem9Qin §11. 1, etc.), then the existence of

lim Z22=% — |im InZot =]

n—oo % I Nn—oo Xn
implies the existence of

Inx,

. Z . .
lim == lim =In lim Yx,

nsofm now N n—>o

and the equality lim ©/x, =1. A direct proof, in terms of & and n(g), with
Nn—o0

separate cases| = 0,1 = w0, and | €R,” isrecommended to the reader.
To seetheinvalidity of the converse, we may take as counterexample the

n

series of genera term x, = % n=1, 2, ... Thelimit of X,.,/ X, does

not exist at al, while /x, —1/2. &

In particular, according to Corollary 2.18, but not 2.16, the series
> X, from the above counterexample is convergent. In addition, the sum

can be computed using geometric series.

2.23. Remark. Comparing the harmonic series (example 2.5 (ii)) with the
alternate harmonic series (example 2.8 (i)), we see that taking the series of
absolute values generally affects the convergence. On the other side, using
criteria concerning series with positive terms, it is easier to obtain
information about series of absolute values. In order to develop such a
study we need more notions concerning the series in I'; as a matter of fact,
werefer to seriesin C, and treat the real series as a particular case.
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2.24. Definition. The series ) z,is said to be absolutely convergent iff
Y|z, is convergent. We say that the series Y" z,, is conditionally (or semi-)
convergent iff it is convergent, but " |z,| isdivergent.

Besides some remarks in examples like the previously mentioned ones,
the above definition makes tacitly use of the following property:
2.25. Proposition. The absolute convergence implies convergence.
Proof. The obviousinequality
|Zn+1 tZuot . F Zn+p|S| Zn+1| + | Zn+2| oot | Zn+p|
permits us to compare the nature of the series }"z, and Y|z, via the

genera Cauchy’s criterion. >

Simple examples show that the converse implication is not true.
2.26. Remarks. (i) The semi-convergent series of real numbers have a
remarkable property, namely by changing the order of terms, we can
produce other series whose sequences of partial sums tends to a previously
given number. In fact, such a series contains infinitely many positive, as
well as negative terms, which tend to zero. By adding conveniently chosen
terms, we can approximate any real number (see problem 9 at the end). Of
course, changing the order of terms means to take another series. On the
other hand, we mention that in the case of an absolutely convergent series,
the sum is independent of this order (known as a Cauchy’ s theorem).
(it) The absolute convergence is also important in the process of operating
with convergent series. In the case of addition, there is no problem: we add
term by term, and the sum of two convergent series is convergent. Doing
the product is more complicated, since writing all the possible products
between terms can be done in different ways, and the convergence of the
product seriesis generally not guaranteed by that of theinitial ones.

In the sequel, we present the Cauchy’s rule of multiplying series, which
iIsmost frequently used for power series:
2.27. Definition. The product (or convolution) of two series

ZotZZ+ 2o+ ... +Z,+ ...
Lot Zy+Zr+ ...+ 2+ ...
is defined (in the Cauchy’s sense) by the series
Cot Gt Gt ... +Ct...

where the terms (o, {3, ... are obtained by the crossing multiplication:
Co=204o,
C1=2Z1+21Zy,
Co=2lo+ 2121+ 257y,

n
Cn=2Zn+21Zpa+ ... ¥ 20121+ 2020= Y 2Lk
k=0
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Simple examples show how unpredictable the square of one (hence in
genera the product of two) semi-convergent series can be:
2.28. Examples. (i) Semi-convergent series with divergent square.

Let us consider the series of term z, =i " n~ Y2 for al neN". Its square,

obtained by taking z, = Z, in the Cauchy’ s rule, has the general term

n n
Cn= S IVK)E™ R 1 n+1-K) =i™ S (Vk/n+1-k) L.
k=1 k=1
Because each term of the last sum is greater than 1/n, we obtain | {, |>1,
hence the square series is divergent.
On the other hand, the absolute convergence is not necessary to the
convergence of the product:
(1) Semi-convergent series with convergent square.
The square of the aternate harmonic series is convergent. In fact, this
square has the general term

n (—p)K (-pnK n 1 2 01
o= 2 EL gy Ly 2y
k=1 n+1-k k=1k(ﬂ+1—k) n+1k=1k
since according to the formula
1 1 n+1

— 4+ — ,
k n+l-k Kk(n+1-k)
each term in {, appears twice. Consequently the square series is alternating,
and | £, | — 0 because 1/n — 0 implies, via Cesaro-Stolz' theorem, that also
n
1 Zl — 0.
n k=lk

Exact information about the nature of a product can be obtained only if at
least one of the seriesis absolutely convergent:
2.29. Theorem. (Mertens). The product of two (semi-)convergent series is
convergent if at least one of them is absolutely convergent.
2.30. Theorem. (Cauchy). The product of two absolutely convergent series
is absolutely convergent, and the sum of the product series equals the
product of the initial sums.

Proof. Let us assume that the series '|x,| and Y'|y,| are convergent to X,
respectively Y, and let > z, be the product of the initial series > x, and
> Vn - Because for some v, p e N we have

n
kZ|zk|s|x0yo| +---+‘anyms‘£(|XO|+---+|Xv|)(|y0|+""+‘y,u‘)S XY,
0

it followsthat )’ z, isabsolutely convergent. The indices ns and my are not

specified because the above reason is vaid for any rule of realizing the
product, which takes into consideration all the pairs of terms.
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Since the nature and the sum of an absolutely convergent series does not
depend on the order of terms, we can arrange z, such that:

n n n
Zu] En)-Ea
k=0 k=0 k=0
which proves the relation between the sums. &

About the sum of a product series we also mention (without proof):
2.31. Theorem. (Abdl). If the series > u,,, >.Vv,, and their product >’ w,,

are convergent to U, V, respectively W, then UV=W.

To illustrate how the above results are to be used in practice, we consider
the following particular examples:
2.32. Application. Study the convergence of the series:
a(a—-1) a(a-1)..(a—n+1)
——Z+..+ + o

2 n!

nale-1..(a—n+1)
. o +...

a) Let a,(a) be the genera term of the series. Looking for the absolute
convergence, when the theory of series with positive terms is applicable,
we see that only the Raabe-Duhamel’ s test is working, and it yields:

imn 2@ ) nesd g
N—>00 |an+1(a)| n—owo N—o

Consequently, if a > 0O, then we have oo+ 1 > 1, and according to the
corollary 2.20, the series is absolutely convergent. As a matter of fact, this
case includes o = 0, when a,(a) = 0 holds for all n>1, i.e. the partial sums
of the series are constantly equal to 1.

In the sub-case o < 0, let us note . = — B, and remark that

an(a) = (-1 FEEEDEEZD) < (_ayp ),

a 1+ o+

ala-1
|

b) 1-a+ ..+ (-1

where the last equality represents a notation. Consequently, the series is
alternate, but because

bn.1(8) _ n—-oa
b,(B) n+1’

it follows that, for o <— 1, the genera term doesn’t tend to zero any more,
hence the series diverges.

The remaining case corresponds to a.e (— 1, 0), when the sequence (b,(j3))
is decreasing. Using 2.20 again, the series > b, (5) diverges since

lim n[ Bn (B) —1} im =B 41 5 q
br41(B) n—o N+ f
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In other terms, the initial seriesis not absolutely convergent, so we have to
analyze it semi-convergence. In this respect, let c,(B) be the general term of
a sequence for which:

Dn(P) = T [e1 (B) + G2 B) + . + G (B

Using asimilar expression of b, .; (), we obtain
Ca(B) =N bn(B) — (N —1)bra(B) = B bn-1 (B).
Because (bn(B)) is a decreasing sequence of positive numbers, it is
convergent, hence (c,(B)) is convergent too. Let us note its limit by

¢=lim c,(B) eR.. According to the Cesaro-Stolz' theorem, we have aso
Nn—oo

¢=1limb,(B), hence ¢/ = B/. Because B> O, it follows that ¢ = 0.

N—o0
Consequently, the condition of the Leibniz' test (corollary 2.7) are fulfilled,
and we can conclude that the initial seriesis semi-convergent.

In conclusion, the complete answer in the case @) is:

- absolute convergenceif a > 0;

- semi-convergenceif o €(—1,0) ;

- divergenceif a < — 1.

b) Similarly to the case @), the absolute convergence holdsif o > 0.

On the other hand, if a < 0, then the same substitution, namely o = — 3,
reduces the series to > b,(B). As we have dready seen, this series is
divergent according to the Raabe-Duhamel’ s test.

The conclusion relative to case b) is:

- absolute convergenceif a > 0, and
- divergenceif a. <O0.

Using some theoretical results from the next sections, we will be able to
get information about the corresponding sums (namely 2“, respectively 0).
So far we can decide only for oo = n €N, when the series represent finite

(binomial) sums, namely 2" in the first case, and 0 in the second one.
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PROBLEMS 8ll.2.

1. Test the following series for convergence:
Inn

@¥:2" BT, ©En-201 @

Hint. Compare to the series 3'1/2", and Y'1/n.

1
2n-1

2. Give examples of convergent series > a, and divergent > b, such that

one of the following inequalitiesbevaidforal n=1, 2, ...
(i)a, > by (inR), (ii)|a,|=|bn|(inR, andin C).
Hint. (i) a,=1/n*, b,=—1/n;

.. n _ 1 N\ 7 . Ny r
(i) a, = (=1)"/n, and bn—%[cos(l—(—l) )2 +isind- (-)MZ|

3. Test the following series for convergence:
. _ . 2:5-8-...-(3n-1
i 2n-12"-"2 i .
(i) 2( ) ( )21.5.9..".(4n_3)
Hint. Usethe D’ Alembert ‘stest.

4. Using the Cauchy’s criterion, study the convergence of the series:

. n+1)" . n "t
o (2t oz

Hint. In the second case, the coefficients of the even powers are null.

5. Test for convergence the generalized harmonic series Znia, a €R.

Hint. If <0, the series diverges. If o > 0, we evauate r,, in the Raabe-
Duhamel’ s criterion, and we obtain

. n[(n+1)“ _1] b (1/n)“]—1.

n% 1/n

: . 1+ X% -1
Because lim r,, = ImL
nN—o0 x—0 X

and divergent for o < 1 (the case o = 1 hasto be studied separately).

=q , the series is convergent for a > 1,

6. Decide about the nature of the series 1-3:5-...(2n-1)
el 2:4-6-...-(2n)
Hint. The Raabe-Duhamel’ s criterion givesr, = n/(2n + 1) —>%.
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7. Usethe Raabe-Duhamel test to establish the nature of the series:

X a(a-1)..(a-n+1) |2
(@ Z (2n+1)[(a+1)(a+2)m(a+n) , Where o eR, and

(b) Z 530, (ﬁm D , Where g >0.

M- (a) If X, denotes the general term of the series, then
n( X, _1) _ n_ (8a+2n’+(120+4)+(1+2a-20")

< T ()’ —> 4o +1.

n+1

Consequently, the seriesis convergent for o > 0, and divergent for a < 0. If
a = 0, then x, = 0, hence the series is convergent.
(b) If y, representsthe genera term of the series, then

Yn — n
n[m—lj = (B-D-". > p-1.
So we deduce that the series converges for > 2, and it diverges for § < 2.

Inthecase = 2, wehavey, = n%l hence the seriesis divergent.

8. Leta, >aandb, =>binT, suchthat a,aandb, #bfor dl n eN. We
say that (a,) faster convergeﬁ than (b,), respectively (b,) slower converges

than (ay), | b _0 Similarly, if Zan—a and Zb =b, we say

n—oo n=0 n=0

that > a, is faster than > by, respectively > b, is slower than > a,, iff

lim %k = 0, where a, =a-— Zak and B,=b- Zbk are the remainders
n—o Py k=0 k=0

of the respective series. Show that:

(@) If >_a, and > b, are convergent series of strictly positive numbers,
and a, — 0 faster than b, — 0, then }_a,, isfaster than) b, .

(b) For each convergent series > b, there exist other convergent series,
> a, faster, and > c, slower than > b, .

(c) If we rewrite the geometric series of termsx,=2"" , wheren > 1, by
decomposing the general term x, into n terms %xn Fot %xn , then the

resulting series >y, isslower than > x .

nt. (@) lim 2~ 0 meansthat to arbitrary € > 0 there correspond a rank

N—> o0 P

n(e) eN such that 0 < % < ¢ holds for al k > n(g). By multiplying the

k
inequalities0 < a, < ¢ by, wherek > n > n(g), we obtain
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O<ap= D) a<ePph=¢ 2 by.
k=n+1 k=n+1
(b) Using (a) we may take a, = b-™ and ¢, = bt ™", where v (0, 1).

(c) To expressy, , let usnote,=1+2+ ... +(n—1) = n(nz_l)  Itiseasy

to see that for each k e N, there exists an unique rank n(k) e N, such that
Gt < K< G + 1. Consequently, we obtain yy = %xn(k) , and finally
3n(k)-n2(k)

Xonk
— <20 _nk)-2 2z 0.
Yo o AsX i X
n(k) “n(k) n(k) *n(k)

Xe X

9. Approximate the numbers 5/3, n, — e, and In 2 with four exact decimals
using terms of the alternate harmonic series.

: 1,1, 1 1,1, 1,1
H|nt.Wehave1+§+§+7<5/3<1+§+g+7+§,hencewestartto

use negative terms and we obtain 1 + %+ %+ %+ % —% < 5/3. Then we

add positive terms until we overpass 5/3 and so on. We similarly treat the

o8] n+1
numbers z, - e. Finally, 3 “2— =in2,
n=1

10. Test for convergence the following series:
© 1 0 1 0 1 0 2 1
a> —,(b —,(c , and (d nin“n)—.
( )ngzlnn (b) nZzznlnn © ngzn(lnn)(lnlnn) @ Ez( )
Hint. (a) can be compared to the harmonic series, The others can be studied
by the integral test, using the primitives In(In x), In(In(In X)), and — In " x .
Consequently, the single convergent seriesin this exercise isthat of (d).

1 . :
11. Let usnote g, = [\/ﬁ + (—1)”T , where neN, n>2. Give an explanation
why ¥ (-1)"*e, isdivergent, while &, — 0.
Hint. (&,) is not monotonic. To justify the divergence we may use the
inequality v(n) =1++/2n —v/2n+1 > 0in evaluating
1 1 1+v(n) 1

— — > ,
J2n+1-1 VJ2n+1 +/2n+1Y2n-v(n) 2n+1

which offers clear information about the odd partial sums, namely:
-1 1 1 1 .

1
= + P >4+ L
BT o1 Va1 3 7y on+1
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12. Let (a,)nen+ b€ asequence of positive real numbers such that Zaﬁ IS

: 1
convergent. Show that the series Z— a, convergestoo.

2
Hin rom(an——) > 0, we deduce that 2an<ar2l (1J :
n n

13. Let s be the sum of the aternating harmonic series (s = In2 will be
obtained in the next section, using function series). Find the sum:

1 1 1 11 1 1 1
1-———— |+ =—=—= + ..t — —— |+
( 2 4) (3 6 8] (Zk—l 4k -2 4k)

Hint. Express the partial sums o, of the rearranged series by the partia
sums s, of theinitia (alternate harmonic) series. For example,

e ot et al et al 3
o k=1 2k-1 4k-2 4k k=] 4k -2 4k 2 2m »

. 1 o
which leads to 63, — ) s. We may similarly treat 6am:1 and oam:».

14. Evaluate the following sums:

@ SHn+a+1-2Jn+a ++/n+a-1),wherea > 0;
n=1

b 3 1 ‘whereo, cR\ Z:

n=1(a@+n)(a+n+1

© Y (@6n%-8n-3)L: (d) §|n“_+1 © f 2n—(rl )"
n=1
Hint. (@) Note ¢“+0‘—¢“+a—1=amandflndsq—aml—al.For (b)

and (c), decompose into elementary fractions, and compute s, .

15. Show that the divergent series
2+2+2%+2%+ . +2"+ . and —1+1+21%+2%+ ... +1"+
have an absolutely convergent product. Extend this property to an arbitrary

pair of seriesof theformay+ > a",andby+ Y.b", wherea=b.

n>1 n>1
Hint. The genera terms of the product series are ¢, = — 2, and ¢, = 0 at the
remainingn=1, 2, ... . In general, we have
am&_bnﬂ__anA_an

=g b"+bya'-a'-b"+

a-b - a-b
where A=a + (b — 1)(a—b), and B = b + (1- ap)(a — b). In particular, we
canredizeA=B=0,evenifa—b=1.
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In this section, we consider sequences and series whose terms are real or
complex functions. From lyceum, we already know some simple cases of
real functions, and we can easily extend them to complex variables. In
principle, each property in R has avalid extension in C, so that the notation

I" for both R and C will be very useful.
3.1. Examples. a) Rising x < — 1 to an increasing power |leads to no limit,
but applying the same processto x> —1yields
0 if [x<1
limx"=41  if x=1 .

Nn—oo .
+o If x>1

Obviousdly, this formula describes the behavior of the general term of a
geometric progression when n— oo,
Using the trigonometric form of a complex number, we can easily pass

from xeR to zeC. In fact, because ‘z”‘ :|z|n,we have

0 if |Z‘<1
lim z"={1 if z=1
n—oo

o If |Zl>l

(where understanding « on the Riemann’s sphere is advisable). In the
remaining cases, when |7 =1 but z=1, from argz" = nargz(mod2z) we

deducethat lim z" doesn’t exist.
n—oo

b) Adding the former terms of the geometric progression leads to the
geometric series 3 x" . According to the above result, it is convergent iff

X <1, whenitssumis
oo YN
TxM o limiX ot
n=0 noo 1-x 1-X
Otherwise, this seriesis divergent.
Similarly, in the complex framework, we have
0 __ 5N
Mo fimizZ2 1
A—0 n>ol-z 1-2

if and only if |7 <1.
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Chapter II. Convergence

c) All the sequences and series with parameters, frequently met in lyceum,
represent sequences and series of functions. For example, it should be well

known that lim Esin n x =0 a any XxeR, etc. The complex analogue of
n—oo N

such results needs a thorough knowledge of the complex functions of
complex variables, likesinn z, with ze C, in this case.

Similar theoretical aspects, as well as plenty of practical problems, lead
us to investigate general methods of defining complex functions, including
the elementary ones (see 8 I1.4). To anticipate, we mention the utility of the
complex functions in tracing conformal maps, calculating real (sometimes
improper) integrals, and solving differential equations (see [HD], etc.).

In other words, our primary interest in studying sequences and series of
functionsistheir rolein the construction of other functions.

Beside the analytical method of defining functions, which is based on
power series, considering sequences of functions may offer significant
information about plenty of numerical sequences and series. The advantage
consists in the use of derivation, integration, and other operations based on
alimit process that involves functions.

As a consequence of these purposes, the present section has two parts:

(i)  Types of convergence and properties of the limit function, and

(i) Developmentsin (real) Taylor series.
3.2. Definition. Let DcR be afixed domain, and let 7(D, R) = R bethe
set of al functionsf: D — R. Any function F : N— <7 (D, R) is called

sequence of (real) functions. Most frequently it is marked by mentioning
the terms (f,,), where f, =F(n), and nisan arbitrary natural number.

We say that a number xeD is a point of convergence of (f,) if the
numerical sequence (f,(X)) is convergent. The set of al such points forms
the set (or domain) of convergence, denoted D . The resulting function, say
¢ :D. - R, expressed at any x D, by

@ () =lim fn(x),

iscalled limit of the given sequences of functions. Alternatively we say that
@ is the (point-wise) limit of (f,), (f,) p-tends to ¢, etc., and we note

p
@ =lim f,, f,—P—>¢ , etc.
n—oo

The notions of series of functions, partial sums, infinite sum, domain of
convergence, etc., are similarly defined in &7 (D, R). For this reason, in the
former part of the present paragraph we mainly refer to sequences (not
series) of functions.

In addition, these notions have the same form in the case of complex
functions, i.e.in &7 (D, C), wherealso D c C.
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§ 11.3. Sequences and series of functions
3.3. Proposition. A sequence (f,) of functions is point-wise convergent to

p
function ¢, (i.e. @ = lim f,on D) iff

Nn—oo
Vxe D Ve >0 3ng(x,e) eNsuchthat n>ng(X, ) =|f(X) —p (X)|<e.
Proof. This condition expresses the convergence of the numerical
sequence (f,(X)) at any xe D, . Of course, in the complex case we preferably
replacex by z e D, < C, and the above condition takes the form

Vze D, Ve >0 dng(z,e) eNsuchthat n>ny(z &) =| (2 — ¢ (2| < ¢,
where the modulus |- | corresponds to either R or C . &

This condition of point-wise convergence can be formulated without
explicit mention of the limit function:
3.4. Theorem. (The Cauchy’s general test of point-wise convergence) The
sequence (f,) is point-wise convergent on Dy iff
Vxe D Ve >0 3ng(x,e) eNsuchthat m,n>ng (X &) = | fm(X) —f(X) |< &
Proof. The numerical sequence (f,(x)) is convergent iff it is a Cauchy
sequence at any Xxe D, . A similar condition holdsin C . &

3.5. Remark. We have to mention x in ng (X, €) because generally speaking,
this rank depends on x. As for example, we may consider f,, : [0,1] > R,

f.00 =X gn: [-1, >R, g.(X) = X" (1 —x); etc. In fact, if we evaluate f,
(or gy) at different pointsx, =2~ -1, neN’, then | fy(x,) =0 = % , hence

the condition in proposition 3.3. can not be satisfied with the same rank
No(e) at al xe D . A similar behavior takes place in the complex case, when
D denotes the closed unit disk in C.

On the other hand, the restrictionsf, : [0,0] - R, andg,: [ -9, 8] —» R, of
the above examples, where 0 < 6 < 1, show that the rank ny(&) may happen
to be valid for al xeD.. It is easy to see that any other restrictions to
compact subsets of D, have similar properties. In the complex case, the
functions f, and g, shall be restricted to closed disks D; ={zeC: |4<6},

or to other compact subsets of D...

In order for us to distinguish such cases, we will introduce other types of
convergence as follows:
3.6. Definition. Let (f,) be a sequence of functions f, : D —TI", which is
point-wise convergent to ¢ :D.—T" (remember that I means either R or C).
We say that (f,) is uniformly (u-) convergent to ¢ iff

Ve >0 3ng(e) e N such that n>ng(e) = |f(X) — ¢ (X)| < g a any xeD.

u

In this casewe note f,——¢ , ¢ = lim f,, etc.

c N—o0
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Chapter II. Convergence

If f, —> ¢ only on arbitrary compact sets K< D, , but not necessarily
on D, then we say that (f,,) is almost uniformly (briefly a.u.-) convergent to

a.u.

function ¢ . Inthiscase, wenote ¢ = lim f,, f,—>——¢p, etc.
D, n—>o D

3.7. Remarks. a) In the definition of the uniform (and the almost uniform)
convergence we already assume the p-convergence, since it furnishes the
l[imit function ¢ . More than this, any u-convergent sequence is aso a.u.-
convergent. In fact, if arank ng(¢) is good for al the points of D, then it is
good for all xe K < D too. Therefore, we say that the uniform convergence
IS stronger than the a.u. one, which, at its turn, is stronger than the point-
wise one, i.e. the following implications hold:

U-convergence = a.u.-Convergence = p-convergence.
b) In the case of a series of functions, besides the point-wise, uniform, and
almost uniform convergence, other nuances of convergence are frequently
taken into consideration, e.g. the absolute and the semi-convergence. These
details are omitted here because of their strong analogy with the numerical
seriesin both R and C.
c) The condition of uniform convergence may be formulated without
special reference to the variable x, as for example if the involved functions
are bounded (continuous, etc.), and the sup-norm makes sense. More
exactly, the sequence (f,,) is u-convergent to ¢ on D, iff

Ve >03ng(e) eNsuchthat n>ng(e) = |fi—@ < ¢.

For this reason, [[f|| = sup{[f(X)| : xeD. } is said to be norm of the uniform
convergence, or simply u-norm. In a similar manner, we describe the a.u.-
convergence in terms of family of semi-norms px (f) = sup {[f(X)| : xeK},
where K denotes a compact subset of D .

The completeness of R and C alows us to formulate also the uniform
convergence with no reference to the limit function, by analogy to theorem
3.4, concerning the point-wise convergence, namely:

3.8. Theorem. (The genera Cauchy’s test of uniform convergence) For a
sequence (f,) to be uniformly convergent to ¢ on D, it is necessary and
sufficient that

Ve >03ng(e) eNsuchthatm, n>ng (&) =|fn(X) —fa(X) [< €
at any xe D. (when we say that (f,) is uniformly fundamental, or Cauchy).

u
Proof. If ¢=lim f,,, then the u-Cauchy condition follows from
N—o0

[fm(X) = () |< [fm(X¥) =0 () [+ ] @ (X) —Fn (X) |.
Conversdly, if (f,) is uniformly Cauchy on D, then it also is point-wise

p
Cauchy (as in theorem 3.4). Consequently, there exists ¢ = lim f, on D. .
N—oo
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u
We claim that ¢ = lim f, too. In fact, for any € >0, let ny(e) €N be such
N—o

that at any xe D, we have

m,Nn>ng (&) =|fm(X) —fa(¥) |<e/2.

On the other hand, each xe D, determines a rank my(X, €)e N, such that

(because of the point-wise convergence)

m>my(X, &) =|fm(X) —@ (X) [<e/2
at any xe D, . So we may conclude that for any & > 0 there exists ng(¢) e N
such that (eventually adjusting m up to x) we have

[fa(X) — @ (¥) [<[fn(X) = () |+ [fX) =0 (X) [ < €,

whenever m > max {ng(e), my(x, &)}. Consequently, (f,) is u-convergent to
function ¢ on D¢ >

In spite of its generdlity, it is quite difficult to apply the Cauchy’s test.
However, it has many practical consequences, as for example the following
corollaries 3.9, 3.10 and 3.11. More than this, we are especially interested
in criteriafor u-convergence, since the p-convergence immediately reduces
to numerical series.

3.9. Corallary. (The Weierstrass' test) Let Z f, be a series of real or
complex functionsf,;:D —1I", and let Zan be a series of real numbers. If

1. ) apisconvergent, and

2. |fa(X) |<a, holds a any xe D, and for al neN,
then Z f,, isuniformly (and absolutely) convergenton D .

Proof. The sequence of partial sumsis fundamental, because

|fn(x) +fn+1(x) .. +fn+m(X) | Saptant... taunm
holds at any xeD. &

3.10. Corollary. (The Abel's test) Let > f,, - g, be a series of functions
definedon D c R, wheref,:D -I'and g, :D —R for al neN. If
1. theseries )’ f,, isuniformly convergenton D , and

2. the sequence (g,) is bounded and monotonic on D,
then also the initial seriesisuniformly convergent on D .
Proof. If wenotesy=f1,, ...,om =1, + ... + ., €tc., then according to 1,
it followsthat | 6 , | < € holds for all m, whenever nis sufficiently large. In
addition, we have:
fn = Op
fie1=01— 0o
frem = Om—0Om-1 , €lC.,
so that the sum in the Cauchy’ s general test becomes:
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fn Ot ...+ 1:n+mgn+m =
=0o0nt (Gl - Go)gn+1 ... F (Gm - c5m—1)gn+m =
= Go(gn _gn+1) ... F c5m—1(gn+ m—1 _gn+m) + OmOn+m-
Because al the differences (g, — gn+1), «-+» (On+ m—1 — Gn+m) have the same
sign (take separately +1 and —1, if easier), it follows that the inequalities
| fl’l(X) gn(x) ..t fn+m(X) gn+m(x) |S
< €] 00(X) = Gnem(X) |+ | om(X) Gnem(X) | <
< 5|gn(x)| + 5|gn+m(x)| + |Gm(x)gn+m(x)| <& (] 9n(¥) |+ 2| Greml(X) )

hold at any xeD . Thus it remains to use the boundedness of the sequence
(gn), which assures the existence of M > 0 such that | g«(X) | < M holds at
any xe D, for sufficiently large n, and arbitrary m e N.

3.11. Corollary. (The Dirichlet’s test). Let an-gn be a series of
functions defined on D R, wheref, :D —TI" and g, :D —»R for adl neN,
and let s, be the partial sums of the series _ f,, . If

1. 3K >0 such that | s,(X) |<K a any xe D, and for all kin N (i.e. the
sequence (s,) isequally bounded on D ), and

2. the sequence (g,) is monotonic and u-convergenttoOon D ,
then > f,, - g, is u-convergent on D too.

Proof. Similarly to the proof of the above corollary, replacing
fa=sh—S-1
frem=Siem—Siem-1
in the suminvolved in the genera Cauchy’stest, we obtain:
foOn+ .o+ fem Oem =
= (5 —$-2) O+ (S1—S) G ¥ s H (Serm—Swrm-1) Gm =— S0 +
+5,(0h — One1) + Sie1(One1 — One2) + oo + Sem- (Gnem-1 — Onem) + Shem Gnem:
Now, let € > 0 be arbitrary, and ng(¢) e N be the rank after which (i.e. for
al n > nyg(e)) we have | gn(X) | < € /4K at any xeD. Because n + m > ny(g)
also holds for all me N, it follows that

| fn(x) gn(x) .ot fn+m(X) gn+m(x)| =
< | S"n—l(X) gn(x) | +K | gn(x) - gn+m(x) | + | S7n+m(x) gn+m(x) | =
< 2K (1 Gn(®) [+ GnemlX) ) < €,
hence > f,, - g, isuniformly Cauchy. &

3.12. Remark. As a genera scheme, the notion of convergence shal be
based on some topology of the space wherefrom the terms of the sequences
are taken. In particular, the fact that x is a point of convergence can be
expressed in terms of a semi-norm on <7 (D, R), namely p(f) = | f(X) |.

More exactly, (f,) isconvergentto ¢ at xeD iff lim p(f, —¢)=0.

n—oo
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Similarly, the u-convergence frequently makes use of sup — norm, and
the a.u. convergence is described by the family of semi-norms py , already
mentioned in remark 3.7.c. Naturally, it is quite difficult to identify such
structures for other types of convergences. For example, the problem of
introducing a topology on <# (D, R) such that the corresponding
convergence carries (preserves, or transports) the property of continuity
from the terms f,, of the sequence to the limit ¢ , is (we hope completely)
solved in [PM,] and [PM;], but many other cases remain open.

Sequences like (f,) in the above remark 3.5 show that the point-wise
convergence is too weak for carrying the continuity from the terms to the
limit (i.e. each f, is continuous while ¢ isn't). The following theorem
points out that the uniform convergence assures the transportation of the
continuity from term functions to the limit function. Because the notions of
continuity, derivative and integral are not yet analyzed in the complex case,
the rest of this section refersto real functions of real variables. Later on, we
will see that these properties remain valid in the complex framework.

u
3.13. Theorem. If ¢ =1limf, on D, cR, and the terms f, : D >R are
n—oo

continuous on D , then ¢ isaso continuous on D, .
Proof. Let usfix xg € D, and ¢ > 0. To prove the continuity of ¢ at X, , we
have to find 6 > 0 such that | @ (X) — @ (Xo) | < € be valid whenever xe D,
and | X — X | < &. For this purpose we primarily consider the rank ny(e),
furnished by the u-convergence of (f,), and choose some n > ny(¢) such that
| fa(X) — @ (X) | < &/3 holds a any x € D, including X, . We claim that the
continuity of f, at Xy yields the desired 6 > 0. In fact, because the inequality
|fn(x) - fn(XO)l <él3

holds at any X e D, whenever | X — %o | <9, it follows that

o () =@ (%) | <[ () =Fa(x) [ +]fa(X) —Fa(X0) | + [ fa(X0) — ¢ (X0) [ < €,
I.e. @ iscontinuousat X . &>

A similar result refersto the sequence of derivatives:
3.14. Theorem. If (f,) isasequence of functionsf,: D — R, such that :
1. f,—P—>fonD,,
2. each f, isderivableon D,

u
3. thereexistsg = limf,’ on D¢,
then f isderivableon D, and f ' = g.
Proof. For any X, , X € D¢, we obviously have:

f(x) - f(xo)
X—Xg

- g(%p)| <
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L FO=T(x0) _ fn(¥) = fn(x0)| | fn(¥) = fn(x0)
X=X X—Xg | X—Xg

~ falx) ¥ \fé(xO)—g(xO) -

Because the last two moduli in the above inequality can be easily made
arbitrary small by acting on nand | X — X, |, the key problem is to show that

()= fa(%0) u (X~ (%)
X— Xg Tox=%g
In fact, this sequence is u-Cauchy, since according to the Lagrange's
theorem we have

fn(¥) = fm(%0)  fn(¥) = fr(x0) _ (fm = f) () = (fm — fn)(X0) _
X=Xo X=Xo X=Xo
= (fn—10) ' (& = (6 — (89,
where &, is lying between X, and x. On this way we reduce the problem to

the uniform convergence of the derivatives.
The rest of the proof is routine. &

Finally, we have arule of integrating term by term:
3.15. Theorem. Let (f,) be a sequence of functionsf,: D -R,D < R, and

let D¢ beits domain of convergence. If
1. eachf,is continuouson D., and
2. fo——f,
thenf isintegrable on any interval [a, b] < D, and

b b
[ f09dx=lim [ f,(x)dx.

Proof. According to theorem 3.13, f is continuous on D, hence it is also
integrable on any interval [a, b] < D.. If € > 0is given, then hypothesis 2
assures the existence of ng(g)e N such that | f,(X) —f(x) | < &/ (b —a) at any
xe[a, b], whenever n > ny(e). Consequently, we have

b b b
[ fn(0dx— | f (x)dx‘ =[[fa(0 - f (x)]dx‘ <

a

b b
< [|fa(3) - f(x)dx<jbfadx=g,
a a

which proves the last assertion of the theorem. >

3.16. Remarks. a) The above theorems 3.13, 3.14 and 3.15 lead to similar
properties of the series of functions. They are omitted here because usualy,
formulating the corresponding statements and proving them shouldn’t raise
problems (however recommended exercises).
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b) Theorems 3.13, 3.14 and 3.15 from above remain valid under the
hypothesis of amost uniform convergence. The proofs shall be dightly
modified by putting forward some compact sets. Most smply, in theorem
3.15, [a, b] already is a compact set. Similarly, sequences like (g,) from the
above remark 3.5. show that the uniform convergence is not necessary to
assign continuous limits to sequences of continuous functions.

In addition, other hypotheses can be replaced by weaker conditions
without affecting the validity of these theorems. For example, theorem
3.15, concerning the integrability, remains true if we replace the continuity
(hypothesis 1) by the weaker condition of integrability. Generally speaking,
one of the most important problems in studying the convergence in spaces
of functions is that of identifying the type of convergence, which is both
necessary and sufficient to carry some property from the terms to the limit.

A contribution to this problem, which concerns the property of continuity,
can be find in [PM1] and [PM;]). The key step consists in formulating the
adequate type of convergence, namely:

3.17. Definition. The sequence (f,) of functions f, : D— R, where Dc R

and neN, is said to be quasi-uniformly (briefly g.u.) convergent on Ac D
toafunctionf: A> R, if

Y V 3 suchthat V 3 such that
e>0 X,eAnyeN Nanxn, V,e7(x,)
[(V)xeVp=| () - f(x)|<e].
g.u g.u.

If so, we note f ='Iimfrl , f,—> T, etc
A A

We mention that the g.u. convergence is a topologica one, i.e. it
corresponds to a particular topology on <7 (D, R), in the sense of [K]],

[PM,], etc. To place the g.u. convergence among other convergences, we
may easily remark that
uU. convergence = .U. Convergence = p. Convergence.
Simple examples show that the converse implications fail to be generally
valid (see aso [PM4], etc.):
3.18. Examples. @) The sequence (f,), where f, : [0, 1] >R, for dl neN,

fn(X) =exp(—n x2) , IS point-wise but not g.u. convergent on [0,1] to
1 atx=0
f=4 &% |
0 at xe (0,4
b) The sequence (g,), where g, : [0, 1] = R, for all neN, g,(X) = x"(1 — X",

IS g.u. but not u. convergent to the null function on [0, 1].
3.19. Theorem. Let the sequence (f,) of functionsf, : D—> R, where Dc R

and neN, be point-wise convergent on Ac D to a function f : A—>R. In
addition, we suppose that each function f,, is continuous on A. Then the
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limit function f is continuous on A if and only if the convergence of the
sequence (f,) isquasi-uniformon A.

g.u.
Proof. Let us supposethat f, — f, and let us choose some X, A. To show
A

that f is continuous at X, , let € > 0 be given. According to definition 3.17,
there is some ny €N, such that for each n > n, we can find a neighborhood

Vi € 7o) such that | f,,(x) — f (X)|< % holds at each x € V, (in particular
at X, t00). Because f,, is continuous at g , thereis some U, € 9(Xo) such that
| frn(%0) — fn(x)|<% holds at each x € U, . If we correspondingly fix a

rank n>ng, then W= U, NV, € 7(Xy) doesn’t depend on n. In addition, all
these inequalities hold at each x € W. By putting them together, we obtain
£ = (%) < [T (X) = T ([ +| T (¥) = T (X0)| +|Tn (X0) = T (X0)| < &,
which proves the continuity of f at x,e A.
Conversely, let ussay that f is continuous at each x, € A. More exactly,
\ 3 such that [(V)xeU =|f(x) - f <& .
e>0 Ue(Xy) [(v)xe | (x) (XO)| é
A similar condition holdsfor f,, i.e.
\ B such that [(V)xeU,=|f,(X) - f <& .
£>0 U, €7 (%,) [(MxeUn=[fa(x) - fa (%) A
Finally, the convergence of numerical sequence (f,(Xo)) to f (Xp) means that

v 3 suchthat [n>ny=|fn(x) - f(x0)|<% .

e>0nyeN
If we note V,= U, N"U € 71X), then, a any x € V,, we have

[ Fa () = || Fr () = T (Xo) +| Fn(X0) = F (Xo)|+|f (%) - f(X)| <& .

q.u.
Consequently, f,— f. &
A

3.20. Remark. @) So far we have investigated how particular types of
convergences may carry some good properties (like continuity, derivability,
and integrability) into similar good properties. To complete the image, we
mention that the limiting process in sequences and series of functions may
transform bad properties into worse, athough the uniform and absolute
(i.e. the strongest) convergence is assured. This fact is visible in the
examples of continuous but nowhere derivable functions, which are limits
of continuous or piece-wise derivable functions. One of the first examples
of thistype (dueto K.W.T. Weierstrass) is the sum w of the series

wW(X) = ia” cos(b"z x) ,
n=0

where ae (0, 1) and be N is odd, such that ab > 1 + (37 /2).
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Another, perhaps more “popular” example (due to B.L. van der Waerden),
starts with the periodical prolongation, noted f : R — R, of the modulus

-|: [<1/2, +1/2] — R , and realizes the so-called condensation of the
singularities (see [FG], [G-O], etc.) by the summation of the series

i4‘” f(4"x) .
=0

b) From another point of view, we have only considered that a sequence or
series has been given, and the task was to study the existence of the limit
functions, and their properties. The converse process is aso very useful in
practice, namely starting with some function (which for example is to be
evaluated or approximated) we need a sequence (or series) that converges
somehow to this function. When the process involves series we use to say
that we develop the given function in a series. An important type of such
developments consists of Taylor series, which will be discussed during the
rest of this section. This type of series is intensively used in the concrete
evaluation of the functions, including the elementary ones. The upcoming
values are usually put in trigonometric, logarithmic, and other tables, or,
most frequently in our days, worked by computer techniques. These series
are equally important from a theoretical point of view, since they play the
role of definitions of the complex functions, operator functions, etc.
The simplest case of Taylor seriesinvolves polynomials.

3.21. Proposition. If P(X) = ag + &y X + @, X + ... + a, X" is apolynomial
function, and X, R is fixed, then the equality

P( 0) <”’( Xo)

P(x) = P(Xo) + ——==(X=Xg) + vt —— = (X~ Xp)"

holds at each x e R . In parti cuI ar, the coefficients have the expressions

%=P(0), 2= 1P'(0) .., = -P(0)
where P’ up to P ™ represent the derivatives of P.
Proof. We write the polynomial in the form

P(x) =g + by (X=X) + ... + by (X=Xo)",

and we identify the coefficients. By repeated derivation in respect to x, and
the replacement of x = Xy, we obtain

b0 = P(XO)’ b1 = P/(XO)’ Ty n! bl‘l = P(n)(XO) )
which lead to the announced relations. &>

Of course, the above equality is no longer valid for other than polynomial
functions. However, in certain circumstances we can give approximating
polynomials of this form, according to the following result:

3.22. Theorem. Let | be aninterval of R, and let functionf: 1 R ben+1

timesderivableon | . If Xgisfixedin |, then the equality
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100 =100) + 2 (x =)+~ (- xg)? 4.+

(n) _
+ f nI(XO) (X_ Xo)n + J' f (n+1) (t) (X nlt) dt

X
holds at any xel.
Proof. We may reason by induction on neN. In fact, the case n = 0 reduces

to the obvious relation

X
f)=f(x0) + [f'(t)dt .
Xo
If the formula is supposed to be valid up to n — 1, then verifying it for n,
means to prove the equality:

(TN GO M R € 0T Dy (X 1)"
[t TR n!XO (X— %) +Xjf( 1)(t)Tdt

By evaluating the difference of these two integrals we obtain:

j[nf“‘)(t) (X— t)f<”+1)(t)](x )" Ldt =

Xo

=100 100kt = L a1

which achieves the poof. >

3.23. Definition. If afunction f : | >R is n times derivable, and X, €1
then the polynomial function T, : R — R, expressed by

(n)
To (09 =100+ 2 (x=x0) + .t —0 (x )"

iscalled Taylor polynomial of degree n, attached to f at X .

The expression of f (x), established in theorem 3.22, is called Taylor
formula. It is easy to see that these formulas represent extensions of the
Lagrange’ s theorem on finite increments.

Thedifference R, =f—T, iscalled Taylor remainder of order n, of f at X,.

In particular, if fisn+1 times derivable, then the remainder expressed by
theintegra intheorem 3.22, i.e.

X _f\N
Ri()= [ D ) XD g
nl
X0
is called remainder inintegral form.
Because sometimes we need other forms of the remainder, it is useful to
know more results ssmilar to theorem 3.22:
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3.24. Theorem. Let function f : | >R be n+1 times derivable on |, and let

Xo €l be fixed. For each xel there exists at least one point &, (depending
on X), between x and X , such that the following equality holds

FO) =1(x0) + o
F00) (- xp) 410 (1) b P ()
f(nJrl)(5 ) N
+(n+1)!x(x‘xo)n L.
Proof. Let E: 1 — R be afunction for which the equality
FO) =1(x0) +
' § (n)
FU0) () + O (xx) PD (mg)
E() n+1
a0

holds at any x el . Sincefisn+1 times derivable, it follows that E is simply
derivableon | . Let us supposethat X, < X, and define ¢ : [Xo, X]| - R by

co(t)—f((tg+
f"(t) 02 : (t) E(X) _pntl
3 (X=1) +..+ ——2(x-1)" +( 1)|( t)
We clam that ¢ is a Rolle functlon on [Xo, X] (i.e. it satisfies the

conditionsin the Rolle’ s theorem, well-known from lyceum), namely:
1. ¢ isderivable on (X, X) becausef isn+1timesderivableon | o (X, X),

2. p(¥)=1(X) = ¢ (X0)-
According to the conclusion of the Rolle' s theorem, there exists &, < (Xo, X)
such that ¢ /(&) = 0. Taking into account that

o'= 10

it follows that E(x) = f ™Y(&,). &

f'(t)
&

—t) +

(x—t)" — E® (5 _gyn
nl

3.25. Remark. The remainder from theorem 3. 24, which involves the
derivativef ™9(&), i.e

— (n+1) n+1
L0 = o 1O (50

isreferred to as the Lagrange’' s remainder of f at X, .
Other types of remainders are possible , e.g. the Cauchy’s one

(n+2)
Cix) = %(1— 9N x™

where 9 € (0, 1) depends on x and n and the list continues.
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All these remainders, and particularly R,, and L, and C, represent
different forms of the same quantity. In particular, L, results from R, by the
following generalized mean formula concerning the integral of a product:

3.26. Lemma. If ¢, w: [a, b] —» R are continuous functions, and y does
not changethe sign on [a, b], then there exists § [a, b] such that

b b
[o v ®dt=0 )]y ®ct.

Proof. Since ¢ iscontinuous, and [a, b] is compact, there exist
m=inf {@ (X): Xe[a, b]} and M =sup { ¢ (X): Xe[a, b]}.
To make achoice, let us say that v >0. In this case, the inequalities

my(t) <o) wt) <My(t)
hold at any te[a, b], and the monotony of the integral gives

b b b
mfy () dt< [o M)y ) dt <M [y {)dt .

The searched & is one of the points where ¢ takes the intermediate value
represented by the quotient of these integrals, i.e.

b b -1
¢(§)=[Iqo(t)w(t)dtj-[jw(t)dtj .

Similarly, we treat the case v < 0. &

3.27. Proposition. Let function f : | —R ben+1 timesderivableon |,
1. If xo €l isfixed, then for any xe| there exists (at |east one) point &,
between x, and x such that R,(x) = Ln(x), and
2. If Xo =0, then there exists 9 (0, 1) such that R,(X) = C,(X) .
Proof. In order to obtain the first equality, namely
X

J‘ f (n+1) (t) (X_t)n dt — f (n+1) (§X) (X_ X )n+1
. nl (n+1)! 0
we may apply the previous lemmato the particular pair of functions

o (®) =) and y (t) = %(x—t)”

on [Xo, X] If Xo < X, respectively on [X, X if X < Xo.
The other equdlity, i.e. R,(X) = C,(X), follows by changing the variable in
theintegral remainder. In fact, if we put t = t X, then R,(x) becomes

X n n+11
[ (t)@dt = X110 (1) d
0 n n: 0

The usual mean formula furnishes the searched 9 < (0, 1). &
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It is useful to know severa variants of remainder because it may happen
that only one of them be adequate to the concrete problem. In particular,
the Cauchy’s form is well fitting to the following binomial devel opment:
3.28. Example. The equality

L+x*=1+ %xﬂ(“‘l)

2! 24, 4+ —1)..#;1 N Dy
holds at each xe (-1, 1) in the sense of the absolute and a.u. convergence,
for arbitrary ace R.

In fact, function f : (<1,0) >R , of values f (xX) = (1 + X)%, is infinitely

derivable, and for any ne N we have:
f O =o(a—=1) ... (a—n+1)@L+x)*".
Consequently, the following Taylor formula makes sense
(1+x)*=1+ a o=l o, al@l).(a-n+l) q
1 2 n!
where C,(X) represents the Cauchy’s remainder, i.e.
a(o —1)..(ax — )L+ 9x)* "L
nl
On the other hand, the D’ Alembert test in limiting form, shows that
14 2y 2@ 2, ale=d.la=n+])
il 2 nl
Is an absolutely and point-wise convergent serieson (-1, 1), because

+ Ca(),

Cn(X) = 1-9)"x"L,

ala=1...(a-—n+D(a—-n) N

n+21! —
lim (n+1 = lim =%y <1
N—o0 a(a-1..(a —n+1) N n—o N+1
n!

whenever |x| < 1. This convergence suggests that in the Taylor formula we

have C,—2% 0 on (-1, 1). To prove this fact, we write

) = (¢ =1..(a —1-n+1) xnax(1+8x)“_1[ 1-9 j |

J

n! 1+9x

a, c

n

and we remark that a, — 0 asthe general term of asimilar seriesfor o — 1;
b is bounded, namely |o X1 —[X)* * <|b <|e @+ |X)* ! ; and 0 < ¢, < 1,
since0<1- 9 <1+ Ixreducesto (1 + x) > 0. More precisely, these

properties of a,, b, and ¢, hold uniformly on any compact set Kc (-1, 1)
since they are implicitly valid at that point X, € K, where we have

%o| =max {|x:xeK}.
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We mention that some particular values of o R correspond to important
developments. For example, integrating and deriving in the developments

of (1+ x)‘l, U1+ x, etc., we may obtain many other formulas, like the
developments of In(1+ x), (1 + x) 2, etc. (see dso thefinal list).

In the particular case a.e N, the above binomial developments reduce to

the finite sums of the Newton’s formulas, i.e. C,(x) = 0 for enough large n,
and the convergence is obvious.

The convergence at x = + 1 has been analyzed in 11.2.32.
3.29. Application. Besides approximation problems, the Taylor formulas
are useful in the study of the local extremes. In fact, if f € C,° (1) takes an

extreme value at X, then f ' (xo) = 0, hence
() —f (%) = 2 () (x—%0)°
Consequently, we have to distinguish two cases, namely:
a) If "(xo)=0, then the increment f (x) — f (xo) preserves the sign on some
neighborhood of x,, hence X, is an extreme point, and respectively
b) If £”(xo) = 0, but there exists f"(xy) # 0, then xg is not extreme point any
more (and we call it inflexion point).
In the more general case, when several derivatives vanish a X, , the result
depends on the parity of the first non-null derivative, namely:

1. 1 fi(x) = f"(x0) = ... = f @~ V(x) = 0 and f ®(xg) = O, then X, really
IS an extreme point;
2. 1 f/(x0) = f"(x0) = ... =1 ®(x0) = 0 and f ¥V (x;) = 0,then X, is not

an extreme point (but only inflexion point).

If f has derivatives of any order n, on D, and the remainder tends to zero
when n— oo (as in example 3.23), it is more advisable to speak of Taylor
seriesinstead of Taylor formulas, according to the following:

3.30. Definition. Let functionf: | —R beinfinitely derivableon | , i.e. the

derivatives f "(x) exist at any xe| and for any neN, (which is briefly noted
f e CR(l)). If Xo el isfixed, then the series

' (n)
f(Xo) + f ELIXO) f EXO)
iIscalled Taylor seriesattached tof at X, . If this seriesis convergent tof,
we say that f can be developed in Taylor series around X, . In the particular
case when X, = 0, some people call it Mac Laurin series.

3.31. Remark. The terms of Taylor series are monomials, powers of X — X,
and the partial sums are polynomials. As usualy, the main problem about
Taylor series concerns the convergence, generally expressed by R,—0.
Thistime it is completed by another question, namely: ”Is the Taylor series
attached to f at Xy convergent to the same f on a neighborhood of x, ?”.
The answer is generally negative, like in the following case.

(X=%g)" +...

(X—=Xg) +...+
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3.32. Example. Let function f: R —R be expressed by

60 = {el’xz it x#0
0 if x=0
This function is infinitely derivable on R and f ®(0) = 0 for al neN, so
that the attached Mac Laurin series is identically null, hence u-convergent.
However, excepting X = 0, we have f (x) #0.
The equality holdsif the derivatives are equally boundedon 1 , i.e.

3.33. Theorem. Letf e Cr (1 ), and let X, €1 . If there exist a neighborhood
V c 1 of X, and aconstant M > 0 such that the inequalities

1009 | <M
hold at any x €V and for any ne N, then the Taylor series attached to f at X,
Isu-convergenttofonV.
Proof. Without losing generality, we may suppose that

V={xel:|x—X%X|<¢&}

for some e > 0. By maximizing the Lagrange’s remainder on V , we obtain
the inequality

n+1

Mg

IRn(X)IJ—I —xo MM S
(n+1)! (n+1)!

which realizes the comparison of | R,(x)| with the general term of the a.u.-

convergent series Me® . Consequently, R, —— 0 on this neighborhood.

We mention the following direct consequence of this theorem:
3.34. Corallary. The Mac Laurin (and generaly Taylor) series attached to
the functions exp, sin, cos, sinh, and cosh are absolutely and amost
uniformly convergent on R to the same functions.

Proof. All these functions have equally bounded derivatives on the set A K,
where K <R iscompact, and 1 €[-1,1]. More exactly,

\ v 3 suchthat
compact KcR  Ae¢[-1,1] M>0

[(V)xeAK, (V)neN:‘f(”)(x)‘< M]
Consequently, we may apply theorem 3.33 at X, = 0. &

Because the developments of the real functions will be starting points
(i.e. definitions) in the complex analysis, we end this section by mentioning
the most remarkable ones, which refer to some elementary functions. The
reader is kindly advised to learn them by heart.

3.35. List of developments. The following rea functions have a.u. and
absolutely convergent Mac Laurin series on the mentioned domains;
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1) The exponential function, on R:

2 n
=T AT I
r 2 n!
2) Thecircular trigonometric sine, on R:
3 5 2p+1
SNX= X- 2t 2 ()P 2
3 5 (2p+1)'
3) Thecircular trigonometric cosine, on R:
2 4 2q
cosx=1— = + % 4(pa X
2 4 (ZQ)'
4) The hyperbolic sine, on R:
3 (5 2P+l

sinhx=x+ X—+—+...+ +
3 5 2p+1)!

5) The hyperbolic cosine, on R:
2 4 2q
coshx=1+" +> 4 + 25 4
2 4 (2g)!
6) The binomial function, on (-1, 1):
(1+X) =1+ @ a(a-1) W2 a(a-1..(a—n+D) N
il 2 n!

where a isarbitrary in R.
7) The elementary fraction, on (-1, 1):
T =1 XX L X+ L
1-x
8) The natura logarithm, on (-1, 1):
2 3 n
IN(L+X)=x= 42 ()"
2 3 n

9) Them" root, on (-1, 1):
'1}1+x:_’|_+1+1__m)(2+__+ (1_ m)-"[l_(n_l)m]xn +

m 2am? nim"
10) Theinverse trigonometric function arctg, on (-1, 1):
3 x5 2N+l
arcigX=X——+—-—
J 3 5 HED” 2n+ 1

Of course, the list is to be completed by many other expansions
depending on the concrete searched problem.
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PROBLEMSS§11.3.

1. Find the domains of convergence, the limit functions, and the types of
convergence (namely point-wise, uniform or amost uniform) of the
following sequences of functions:

a) f,(x) =arcsinnx; b) gn(X) = 2 arctgnx;
T
x" 1+ X4 X2+t X"
C) Un(X) = T d) va(X) = . :
1+Xx 1+x

Replace x R by z €C in the last two examples, and analyze the same

aspects concerning convergence.
Hint. @) Becausef, : [-1/n, /n] —» R, the sequence (f,) makes sense only on

D ={0}, where it reduces to a convergent numerical sequence.

p
b) D. =R, and lim g,(x)=sign x. The convergence is not almost uniform
N—oo

(hence aso not uniform) since the limit is not continuous.
c) D. =R\ {-1}, and the limit function is (only point-wise)
’ p(1/2 if x=1
im u,(X) = :
A U0 =1 if [x|1
d) D.=R\{-1}, and the limit is (only point-wise)
) |- ) f [M<1
lim v, (X) =4+ © if x=1
N—o0
x(x-)7t if M>1.
In the complex case we have D, ={z €C : | z| # 1} u{1}, and we shal

replace +oeR by weC.
2. Justify the uniform convergence of the following series of rea functions
(of red variables):

— COSNX _ — SiNNX _
S Iacdlay b) YOO, a>1;
n=1 N n=1 N
=1 — 1 .
) D> =cosnx; d) > ——sinnx;
n=1n n=1VN

e) Z (a, cosnx + b, sinnx) , where the numerical sequences (a,,) and
n=1
(bn) decreasingly tend to O.
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Hint. The problems @) and b) are solved by the Weierstrass' test since the
series Zl/ n% is convergent whenever o > 1. The other examples can be
studied by the Dirichlet’s test, because a finite sum of sines and cosines is

bounded, e.g.
n cos — cos(n+ 1)x 1
Zsinm‘ —|2 = 2 \< .
k=1 2sin” ‘ sin>
2 2
3. Show that the sequence of functionsf,: D — R, where
f () =X"—1+ _Nd-x) 1
1+n(1-x)

Is convergent to O in the following manner:
a) point-wise but not aimost uniformly if D =[0, 1], and
b) amost uniformly but not uniformly if D = [0, 1).

Analyze the same problem in a complex framework, by taking
_ def .
D=S501) = {zeC:|Z<1.

Hint. Takex = 1 and x= 1 separately. Evaluate [ f,() -0 |at x=1— =,
n

9 1=11-2)"-2|>3-1>0.

The difference between the two cases rises because [0, 1] is compact, while
[0, 1) isn’'t. At the same time, for any compact set Kc [0, 1), the nearest
pointto lisxo=supK eK..

The complex caseis similar, but a clear distinction between |z|=1and z
= 1l isnecessary.
4. Let thefunctionsf,: R — R be expressed by:

l .
) = {n if xeQ
0 If xeR\Q.

Show that the sequence (f,) of everywhere discontinuous functions is
uniformly convergent to a continuous limit (i.e. the u-convergence
preserves the good behavior of the terms, not the bad one!).

Construct asimilar example of complex functions.
5. Prove that a uniform limit of a sequence of bounded functions is
bounded too. Using the functionsf,, : (0, 1] — R, of values

£0)=min {n <3,
X

show that the au.-convergence is not strong enough to transport the
property of boundedness from termsto the limit.
Consider similar functions of acomplex variable.
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§ 11.3. Sequences and series of functions
Hint. If f, ——¢, we may use the inequdity [lp <[l @ —fu || + || fa Il
where || f || = sup {| f(X) |: xe D}. The particularly considered f,, are bounded

functions, but the a.u. limit ¢ (X) = 1 IS unbounded .
X

Take into account that C is not ordered. However, | z |[eR . , SO we may
consder f,: {zeC:0<|z| < 1} > R, of values

(@ =mn {n 1}
2
. : sinnx
6. Derive term by term in the sequence (f,), where f,(X) = T at any
n

xeR, and n > 1. Similarly discussthe series >"[f,,1 — f,].

Hint. f,—%>0 on R, but ( f!) is not convergent, neither point-wise. The
seriesis u-convergent to — sin x, while the series of derivativesis divergent
(1.e. the hypotheses of theorem 3.14 are not fulfilled).

7. For any n > 2wedefinef, : [0, 1] — R by theformula

n?x if xe[0,2)
fn(x) = —nz(X—%) if xe %,%)
0 it xe2,1]

1
Show that f, ——0, but [ f(x)dx = 1foraln=> 2.
0

Hint. f,(0) = 0, and for any x > O there exists neN such that x > 2/n.
Disregarding theorem 3.15, the different results

1 1
lim [ fn()dx=1=0=[(lim f,(x))dx
n—>ooo 0 Nn—o0

are possible because the convergenceis not almost uniform.
8. For each ne N\ {0, 1} we note

Xn={§ peN,0<p<n,(p,n)=1},

where (p, n) means the greatest common divisor of p and n. Show that each
functionf,: [0, 1] —> R, of values

1 if xe X,
f(X) = :
0 otherwise ,
is integrable on [0, 1] , but the series Z f, is point-wise convergent to a
non integrable function.
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Hint. Each f, , n > 2 (and consequently each partia sum s, of the
considered series) has only a finite number of discontinuities at points of
the form

112131234 .1 nl
2’ 3’3’ 4’4, 5’5’5’5, ""n""1 gt
e — =

f, f3 1, fg f

where they equa 1, hence these functions are integrable on [0, 1]. The
series is point-wise convergent to the function

1 if xeQn(0,)
¢ (X) = :
0 otherwise
9. Using adequate Taylor developments evaluate the sums:

aQ l-—+=- +...
n
n
) 1- 241 Y
9 an+1

_n\h-1
1 1 1., (D

c) 1- + — + ...
33 5.3 7.3 (2n-1)-3"1
_(_~\n+1
d) 3_§+i_“_+&+
4 42 4n

Hint. @ The development of In(1 + X) is convergent at x = 1, so take x—1
in theorem 3.13, applied to example 8 on the list 3.35.
c) Takex=1inthefunctionf: (-1, +1] >R, defined by the formula

au. 5 9 _n\n4n+l
f(x) = x—X—+X——...+L+
(-1,+1 5 9 4n+1
According to theorem 3.14, the derivative of f is
Fr=1-x" +X— .. +()"X"+ ... = 14 .
1+ X
Becausef (0) =0, it follows that
X
f9=] 14dt.
ol+t
d) Replacexzz% in
3 5 2n+1
FX) =X— b ()N
3 5 2n+1

e) Usethefunctionf: (-1/2, 1/2) —» R, defined by
f(x) = Z[l—(—Z)”*l}x” =Y x"+2> (29" =
n=0 n=0

n=0

1
(1—x)(1+ 2x)
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§ 11.3. Sequences and series of functions

10. Use adequate Taylor formulato approximate:
a) sin 33°to five exact decimals;

b) e %% to three decimals;

c) In2totwo decimals;

d) = totwo decimals;

1 —t2 .
5 joe dt to four decimals.
Hint. @) Take xg = #/6 and h = X — Xy = 7/60 in the development of sin.
Since for n = 3 the Lagrange' s remainder is maximized to

h* 5
|R, | = Ismfx <1077,

the searched approximation is

2 3
sin33° ~ l ﬂj_g(ﬂ) E_E(_) @ ~ 0.54464.

2 602 2\60) 2 660/ 2
b) According to the example 3.32, the development of exp (— x ) is not
useful. Alternatively, we may develop € around x, = 0. Because the third
term at x = — 0.01 is 0.00005, and the series is dternate, it follows that the
remainder has a smaller value.
c) Usethe seriesof In (1 + X) on thelist; sinceit is slowly convergent, other
expansions are recommended.
d) Develop arctg x around X = 7t/6.
€) Integrate in the devel opment of exp(— x?)

def X ( 1) X2n+1

f(x) = jexp( —t )dt = Z

Because the eighth term of the alternate series at X = 1 in less than the
imposed error, we obtain 0.74681 < f (1) < 0.74685.
11. Find the Mac Laurin developments of the functions:

a) Si(X) = j (S 4 ccalled integral sine);

n 2n+1

1-cost

b) u(¥) = j
0
Hint. @) Integrating term by term in the series
: 2 2p
Sl—ntzl—t—+...+(—l)p t +
t 3 2p+D!

dt (part of the integral cosine).

we obtain

3 2p+1
X X X
22 (=P

S'(x)=11| 3 +
: : 2p+1)-(2p+12)!
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1-cost

b) Similarly, integrating the devel opment of leads to

2 X4 X2q

:X___ _n4d
u(x) > 2 4‘4].+...+( 1 29 (20)!

Theintegral cosine is defined by the improper integral

+...

X
Ci(x) = j%‘“dt.
0

We mention the relation Ci(x) = In x + y — u(x), where y is the Euler's

constant y = Iim(1+%+...+£—lnnj.

N—>o n
12. Search the following functions for extreme values:
a) f(x) = 2x+33x2 b) g(X) = SN X—X
c) u(x) = cosh 2x —2x?; d) v(x) = x° e*.

Hint. @) f (-1) = 1 is alocal maximum, and f (0) = 0 is aloca minimum,
even ' (0) does not exist. b) g has infinitely many stationary points x, =
2kn, ke Z, but no local extreme. ¢) We evaluate u(0) = u’ (0) = u” (0) = u”
(0) = 0 and u®(0) > 0, hence 0 is a point of minimum. d) x, = -5 is alocal
minimum, but x, = 0 is an inflexion point since v(0) = ... = v (0) = 0 and
v (0) = 0.

13. ldentify the type of convergence of the sequence (f,), where the
functions f, : R— C take the values

f,(0) = (1+iQJn .
n

Hint. According to problem 3.1.8.c, we have

p.
lim f,,(0) = cosf +ising.
n— oo R

The uniform convergence on [0, 2r] and the periodicity of sin and cos do
not assure the uniform convergence of (f,). The analysis of the mentioned
problem shows that the convergence is almost uniform.
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It is easy to remark that the partial sumsin Taylor series are polynomials,
whose coefficients are determined by the developed function. The power
series generdize this feature, i.e. they are series of monomials. The main
idea is to reverse the roles: Taylor series are attached to a given function,
while power series are used to define functions.

In the first part of this section we study real power series, which provide
a direct connection with the well-known differential and integral calculus
involving real functions of areal variable. In the second part we extend this
study to complex power series, which open the way to a complex anaysis.
Finally, we use the method of power series to introduce several elementary
complex functions of a complex variable.

4.1. Definition. Let (a,) be a sequence of real numbers, and let xoeR be

n
fixed. The functions series [an(x X0)"; Zak(x— xo)k) , briefly noted
k=1
S an(x—x0)", (1)
iscalled (real, since x, a, € R) power series. The point X, is the center, and

the numbers a, are the coefficients of the series. The series (1) is said to be
centered at X .

Obvioudly, the entire information about function series, contained in the
previous section, remains valid for power series. In particular, the terms of

a power series, namely the monomia functions f,(x)=a,(x—Xg)", are
defined for all n eN, and at all xe R. However, the domain of convergence
generaly differsfrom R, as we cam see in several particular cases.

4.2. Examples. @) If a, = 1 for al n eN, then (1) becomes Z(x—xo)”,
and we call it geometric seriesof ratio q = X — X, . Because

n  1- qn+1
Si(¥)= 2 (x=%0)" =
k=0 1-
and lim q" =0 if and only if | g | < 1, it follows that the geometric seriesis
Nn—oo

convergent exactly intheinterval | = (Xo— 1, X0 + 1). The divergence in the
case |g|>1 is based on the fact that the general term of a convergent series
necessarily tends to zero.

To conclude, the domain of convergence in the case of a geometric series
istheinterva | , centered at X, of radius 1.
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Chapter II. Convergence

b) The Taylor series of the exponential function, i.e. ) %x” =e¥,isa
n=0

power series of coefficients a,, = % which is convergent at any xeR. We
may interpret R like an interval centered at X, , of infinite radius.

c) The power series > n"(x— Xg)" is convergent only at X = Xo. In fact, if
X # Xg, then we can find some no (X) €N, such that njx— x| >1 holds for
al n > ng (X), hence the genera term of the series doesn’t tend to zero at
this point. Consequently, the set of convergence reduces to { X}, which can
also be viewed as an interval centered at Xq, of null radius.

These examples lead us to the conjecture that the set of convergence of
any real power seriesis an interval, including R and {Xo} in this notion. To

prove the validity of this supposition in the most general case, let us note:

o= lim Yay| )

Nn—oo
and

Yo if oeR,
R=<o if =0 (3
0 if o=w
The following theorem explains why Ris called radius of convergence.

4.3. Theorem. (Cauchy — Hadamard) Each power series (1) is absolutely
and amost uniformly convergent in the interval | = (X% — R, X + R), and

divergent outside of itsclosure | .
Proof. First we remind that (2) concentrates the following two conditions:
() v 3 suchthat [(V)n>ng = Nay| <w+¢], and

>0 nyeN
() v 3 suchthat Wja,[>0-¢.
>0 meN

Casea) 0< w< « . From (I) we immediately deduce that
not

OL.
3y (x=%0)"| < (@+2)"[x=xg" = q"
holdsfor al n>ng. If

X—xXg|<—— ,

w—+éE
then g < 1, hence the general term of the given series is less than the term
q" of a convergent geometric series. Using the comparison test 11.2.12, it
follows that (1) is absolutely and a.u. convergent in the interval
1




§ I1.4. Power series

Because ¢ > O is arbitrary, this convergence holdsin | too.
To prove the assertion concerning divergence, we use condition (I1). Let
ustake e > 0suchthat w— &> 0, and m eN likein (Il), so that

not
m

am(x— )" > (@ - 2)"x- %" = p™.

Consequently, if [x—xg|> , then the geometric series of ratio p is

w—¢&
divergent, and according to the same comparison test, so is the given power
series. Taking into account that ¢ is arbitrary, divergence holds whenever
IX—Xo| 2V =R.
Case b) @ =0. Using (1), to each ¢ > 0 and x R there corresponds a rank

no(e,x) €N, such that ‘an(x— xo)”‘ <&"x—xo|" holds for all n>ny(e,x).

At any X € R we may take ¢ > 0 such that

not.

glx—xo| = q<1,
hence the geometric series of ratio q is convergent. As before, it remains to
use the comparison test.
Divergenceisimpossible, since (Il) istrivia a o = 0.
Casec) w=oo. Instead of (I) and (I1), we express & = lim Dja,| =0 by
n—oo
(y v 3 such that Pja,|>M .
M>0 meN

Consequently, ‘am(x— xo)m‘ >M ™M|x—xo|" ispossiblefor arbitrary M >0,
which snows that series (1) isdivergent at any X# Xg. &

4.4. Remarks. a) Apart from its theoretical significance, we have to take
the superior limit in (2) whenever infinitely many coefficients of the series

o0
are vanishing. For example, the series Z %in has the coefficients
n=1

Un if p=2n
ap = _
0 if p=2n+1.

Because lim ¥n=1, wehave R=1, but lim g/a,| doesnot exist.
n—oo n—oo

b) In the case 0 < w < oo, theorem 4.3. solves the problem of convergence
at any X € R, except the endpointsof |, say x;=X— R, and X, =x + R.To
get the complete answer of the convergence problem, it remains to study

o0 o0
the two numerical series: > a,x and > a,x3 .
n=0 n=0
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This behavior at the endpoints x; and x, is unpredictable, i.e. al the
combinations convergence / divergence are possible. For example,

e Divergence at both x; and x, holds for the geometric series Zx” X
n=0

o0
e Convergenceat x; and divergence at x, hold for Z% X"
n=1
o ()"
e Divergence at x; and convergence at x, hold for Z - x":
n=1

e Convergence at both x; and x, holds for the series Zi X"
n= 1
c) Instead of (2), we may evaluate o using the D’ Alembert formula
any1

: (4)
an

because the existence of the limit in (4) assures the existence of that in (2),
and these limits are equal. Formula (4) is sometimes very useful in practice,
especially when the evauation of the limit in (2) is difficult. As for
example, we may compare the efficiency of these formulas in the case of
the exponential series

o= lim
n—oo

ii.

The theory of the real power serles gas several “weak points’, i.e. there
exist some phenomena that cannot be explained within the frame of real
variables. The simplest ones concern the difference between the domain of
existence (convergence) of the series and that of the sum function.

4.5. Examples. @) The geometric series Z X2 = 1 has the radius of
n=0 1-x?

convergence R = 1. Thisis perfectly explained by the fact that it represents
the Taylor series of the function f(x) = % , which isnot defined at +1.
1

However, f makes sense outside of (— 1, + 1), where the series diverges.

b) The dternating geometric seneﬁZ( )" x2" 1% has the same
n=0 + X

domain of convergence as before, while its sum g(x) = Is defined

1+x2

on the whole R. In addition, the restriction of the convergenceto (-1, + 1)

IS no longer explained since g has no singularities. Drawing the graphs of f
and g is recommended to visualize the situation.
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The explanation is immediate in complex variables, since the complex

function h(z) =

5 cannot be defined at +i, and [+ i|=1=R too.
1+2

In the second part of this section we'll see that the study of the complex
power series offers such explanations, and in addition it is similar to the
real casein many respects (pay attention to differences!).

4.6. Definition. Let (a,) be a sequence of complex numbers, and let us fix

k=0

Y. an(z-27)", (5)

is called complex power series centered at z,.
The coefficients a,, as well as the center z,, may be real numbers, but the
series (5) is essentially complex since zeC. To get a quick view of some

domains of convergence we may consider severa particular cases.

4.7. Examples. a) The complex geometric series Z z" is convergent in the
open unit disc (centered at zero), D(0,)) ={zeC:|Z<3}.

b) The “exponential like” series Z%z” Is absolutely and a.u. convergent

n
Zo €C. The function series [an (z—29), D & (z— zo)k), briefly noted

on the entire complex plane (since |ZeR !).

c) Theseries > n"(z-zy)" isconvergent only at z=z.

The general result concerning the domain of convergence of a complex
series makes use of the following simple fact:
4.8. Lemma. If the power series (5) is convergent at some z; €C, then it is

absolutely convergent at any other z eC, whichiscloser to z, than z , i.e.
12— zp|< |z — 79 -
Proof. If Zan (z1 - z5)" is convergent, then lim a,,(z —zy)" =0, hence
n—o0

{‘an(zl — zo)”‘ :ne N} is abounded set of real numbers. Because we may

_ not.
reformulate the hypothesis |z - zy| <|z - zo| by 27201 Z"g<1, we have
4- 4
7_ n
‘an(z— zo)”‘ :‘an(zl —~ zo)”‘- 2| <Mq", where M satisfies the only
4- 4

condition M ZSup{‘an(zl—zo)”‘:neN}. The comparison of the given

series to the geometric series of (positive) ratio q < 1 shows that (5) is
absolutely convergent at z . &
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By analogy to R, if we accept the entire C and the singletons {z, } to be

called discs too, then the problem concerning the form of the domain of
convergence of acomplex power seriesis simply solved by the following:
4.9. Proposition. Every complex power series (5) is absolutely and a.u.
convergent in adisc centered at 7, .

Proof. First of al, let usidentify the two extreme situations, namely:

a) The series (5) is convergent at each point of a sequence (z,,) e+, Where

z, €C and lim|z, — zy| =. According to the above lemma, the series (5)
Nn—oo

Is absolutely and a.u. convergent on C.

b) (5) is divergent a any point z, # zy of a sequence (z,)nen+, Where
z,€C and z, — z;. According to the same lemma, 7, is the unique point
of convergence.

In the remaining cases, there exist z;, ; € C such that (5) is convergent at
z, and divergent at £; . Using lemma 4.8. again, we establish the behavior of
the seriesin the interior of the circle

Ceonv.(20,|z — 20)) ={ze C: |z~ 75| =|7 — 7
where it is convergent, and in the exterior of the circle
Caiv.(Z0/61~ 20)) ={z€ C: |z~ 7| =|g1 — 7]} ,
where it diverges. To find out the nature of the series (5) in the remaining
cases, we consider “testing points’ in the annulus
AZo.|z1 - 20| |61 - 20)) ={z€ C: |7 - 79| <[z 29| <[61 — 20} -
If the series converges at some ze A, we note it z,, and we increase the disc
of convergence. By contrary, if the series diverges at this point, we note it
& , and we use it to decrease the radius of the circle Cg;,, (as sketched in
Fig.l1.4.1. below).

},

Fig. 11.4.1.
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By repeating this construction, we obtain an increasing sequence of real

numbers ( | z,— 2| ), and adecreasing sequence ( | ,— 2| ). In addition, we

can chosethem such that lim (g, — zg| —|z, — /)= 0, hence the number
n—oo

not. ) )
R = lim|z, - z|= limg, — Zg|
n—oo n—oo
IS uniquely determined according to Cantor’s theorem (e.g. 1.2.17). It is

easy to seethat (5) is absolutely and a.u. convergent in the open disc
D(zp,R) ={zeC:|z—-7y|< R},

and divergent in its exterior C D(zg, R). O

Likein R, the above number Ris called radius of convergence, and it can

be evaluated by formulas similar to (2), (3), and (4). More exactly:
4.10.T heorem. (Cauchy — Hadamard) If (5) is a complex power series, for

which we note
o= lim Yay| 2)

Nn—oo
then its radius of convergence hasthe vaue
VYo if oeR,
R=q0o if =0 (3)

0 if w=w
The proof issimilar to that of theorem 4.3, and will be omitted. &

4.11.Remarks. a) The intervals of convergence | = (X — R, X + R), in the
case of real power series, also represent discs, in the sense of the intrinsic
metric of R. Consequently, theorem 4.10 extends theorem 4.3 in the same

way as the norm of C extends the norm of R. In particular, if in (5) we have
a, €R, and z; =Xy €R, then the interval of convergence for the resulting
real power seriesisa“traceon R” of the plane disc of convergence, i.e.

I (Xg,R)=D(x5,R) "R
b) Following D’ Alembert, instead of (2') we may use the formula

, (4)
an

to evaluate the radius of convergence. The only difference between (4) and
(4’) concerns the domain of the modulus, whichisR in (4), and C in (4’).
¢) Theorem 4.10 gives no information about the nature of (5) on the circle
C(zg,R) ={zeC:|z- z5|=R =FrD(z,R).
Simple examples put forward a large variety of situations between the two
extreme cases.
e Divergenceoveral C(z,, R), asfor the geometric series, and

— | a,
o= lim 2+l
n—oo
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e Convergence on the entire C(z, R), asfor the series Zn—lz "
n=1
To obtain more information, we need additional hypotheses, e.g.:

4.12. Theorem. (Abel) Let Zanz” be a complex power series with real

n=0
coefficients, which has the radius of convergence R, suchthat 0< R< . If
a>aR>a,R>...>a,R">... > 0, (6)

then the seriesis (point wise) convergent at any z< C(0,R) \{R} .
Proof. Let us first remember another Abel’s theorem (see 11.2.6 in complex
form): “If Zzn Isanumerica series with bounded partial sums, and (&)

IS a decreasing sequence of positive (real) numbers, which convergesto O,
then an z, isaconvergent series.” Now, for any ne N we may write

n
z
a,z" :anR”(E) =&n2Zp

n
where ¢, =a,R" and z, = (é) fulfill the conditions of the cited theorem.

Infact, if | z| =R, but z# R, then the partial sums
)n+1

n 1__(;/
S"(Z):1+é+"'+(é) :ﬂ;/LRT

are equally bounded, more exactly, for any ne N we have

Ish(2)| < 2
(7]

Consequently, except z= R, the gives seriesisconvergenton C(0, R). <

4.13. Remarks. a) Convergence at z = R is neither affirmed nor denied by
theorem 4.12, so it remains to be studied separately. On this way we may
compl ete the answer concerning the behavior of the series on the whole C.
b) Taking z, = 0 in theorem 4.12 is not essential. More generally, we can
reduce every qualitative problem concerning power series, including
convergence, to the case, viathe trandation of z, to 0.

c) We may use theorem 4.12 to identify more points of divergence on the
frontier of the disc D(z , R). For example, if we replace z = ¢*, where

o0
keN , in the power series Z% z", then we find out that the series
n=1

o0
> L5 M isdivergent at the K" roots of 1.
n=1
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4.14. Classes of Functions. It is essential for us to distinguish between the
senses in which we may speak of functions and classes of functions. An
abstract class of functions, e.g. continuous, derivable, etc., is defined by a
specific property, while the concrete employment of a particular class of
functions asks an effective knowledge of the vaues. For example, we can
uniquely define a function by specifying its derivative t*e™" , itsvalue at 0,
and a > —1, but whenever we want to use this function in practice, we need
its values at different points. For this reason mathematicians have written
plenty of books containing tables of values of some particular functions, as
for example tables of logarithms, sine, cosine, Bessal functions, etc.

During the former stage of the study, we deal with the class of elementary
functions, which is generated by the algebraic functions and function exp.
Any non elementary function is said to be special. More exactly, function f
Is called algebraic iff to obtain its values f (x) we have to perform a finite
number of algebraic operations (sum, product, difference, quotient, power,
root). If the calculation of the values f (X) involvesinfinitely many algebraic
operations, and consequently some limit processes (like in series!), then f
Is named transcendental function. In particular, the exponential is the only
transcendental function in the class of elementary functions, since its values

are obtained by summing up the series
00 n def.

> X exp(x) =e*.
a—o N
To be more specific, we mention that the assertion “class X is generated
by the functions f, g, ... ” means that besides f, g, ... , this class contains

restrictions, compositions, inverses and algebraic operations with them. For

example, dueto the Euler’s formulas

X L g 1X _ X _ g ix
COSX=——— , SINX=———,
2 2

it follows that the trigonometric functions are elementary. This simple case
aready shows that the real framework is not sufficient to study functions,
since the trigonometric functions are expressed by complex exponentials.
The initial way of learning functions is usually called geometric, because
of the strong connections to trigonometry, graphs, etc. Whenever we think
of afunction as a set of numerical values, we need some rule of computing
these values. Most frequently, the method of introducing the functions by
this computation is called analytic. Simple cases of analytical definitions of
some functions, known from lyceum, involve the primitives that cannot be

expressed by elementary functions (e.g. .[:e‘tz dt, .[?In(1+ tanx)dx, etc.).

Generdly speaking, a function is known if we can approximate its values.
Because we naturally prefer to approximate by polynomials, the analytic
method reduces to define functions by power series.

125



Chapter II. Convergence

To conclude this analysis, we have to define the elementary functions in
complex variables, using the analytic method, i.e. by power series.

4.15. Definition. The complex exponential function is defined by

not. def. o«
V4

e’ = expz = Ziz”. (7)
a—o N
We similarly define (compare to 11.3.35 in R) the circular and hyperbolic

complex trigonometric functions sine and cosine by the power series:
def. oo (_1)n onal

sinz = Y ——~2— 77"

o (2n+1)!

def. o (_1)n

cosz = ),

o (2n)!

snhz = Y —=_ z#™1,
= (2n+1)!

coshz = —
a0 (2n)!

To give amodel of how to study the complex e ementary functions, we'll
analyze the exponentia in more details. In particular we'll see that also the
complex trigonometric functions can be expressed by the exponential.

4.16. Theorem. Function exp has the following properties:
1. Itsdomain of definitionis C;

72N

2. e2.e2 =e2"2a dl 7,2, eC (fundamental algebraic property);

3. €Z=cosz+isinz atal zeC:
iz —iz iz —iz
4. sinz:% and cosz:% at al zeC (Euler):
|

5. &Y =eX(cosy+isiny) atal z=x+iyeC;
6.
7. T =2n isaperiod of the function exp.

Proof. 1) The domain of definition for exp is the disc of convergence of the

power series (7). Using (4'), we easily obtain R = «, hence (7) converges
on the whole C.

e’|=e* and arge” = y + 2kz, where z=x+iyeC and keZ;

2) We have to multiply the series of €* and €%, which are
2 n

y A Z
ea =1+ . 4+ 4 and
1 2 nl
z, 72 z)
L1422, 4224
1 2 Nl
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§ I1.4. Power series

According to the Cauchy’s rule, the product power series has the terms

2
co=1, g1=¥, So =%, and by induction, for dll neN,
I R CRL
n_ - .
ko K' (n—k)! nl
3) We may replace i*K =1, i**1=i, i**2=_1 and i**3=—i, where

k eN, in the power series of €'Z.
4) Add and subtract the previously established relations
e'Z=cosz+isinz, and
e'?=cosz—isinz.
5) Combining properties 2 and 3 from above, we obtain the asked relation
Y —eX. &Y =eX(cosy +isiny).

6) Interpret the formulafrom 5 as trigonometric form of Z = e?.
7) The functions sin and cos in 5 have the period 2. >

4.17. Geometric Interpretation. The complex exponentia is a complex
function of one complex variable, henceits graphisapart of Cx C = R*.

Because we cannot draw the subsets of R* , the method of visualize the

properties of afunction on its graph, so useful for rea functions, now is not
helpful any more. However, we can give geometric interpretations to the
properties of the complex functions like exp, if we concelve these functions
as transformations of the complex plane into itself. Fig. 11.4.2 illustrates
this method in the case of the complex exponential.

Y=ImzZ*%

2ni e
2P 27 / 2
| s
:}:,i‘ :,: ‘ | \\7/
0 - 1 X=Rez g \\ /

—

Cartesian coordinates Polar coordinates

Fig. 11.4.2

In fact, according to the property 6 in theorem 4.16, the correspondence
C 3 z>Z =e” eC takesthered formR* 3 (x,y) = (X,Y) € R?, where
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{|z|=\/x2 +Y? =¥
agZ=y+2kr,keZ.

The property of periodicity shows that the band

{(x,y)eR?:ye[0,27)} = R x[0,27)

Is bijectively carried onto C \ {0}. The other bands, which are parallel to
this one and have the same breadth 27, have the same image.

Another remarkable property is € = 0. It is based on the inequality
e’l=e">0,
which holdsat all z=x+1y eC, respectively at all xeR.

Theinverse of exp is defined as usually, by reversing the correspondence:
4.18. Definition. The inverse of the complex exponential is called complex

logarithm, and we note it Ln. More exactly, if Z=€*, thenz=Ln Z.
The main properties of Ln naturally extend those of In.

4.19. Theorem. The complex logarithm has the properties:

1. The domain of definitionis C\ {0};

2. Lnisamulti-valued function (of type oneto many), i.e.

LnZ ={InZ| +i(argZ + 2kr) :k € Z} (8)

3. LnZ;Z, =LnZ; +LnZ, forany Z;,Z, €C\{0}.
Proof. 1. Thedomain of Ln isthe image of exp.
2. Lnismulti-valued because exp is periodical. If wenotez=x+iy=LnZ,

then from the relation Z =e**Y = eX(cosy +isiny) we deduce that

Z|=€" and argZ=y + 2kn
for some ke Z. Consequently, x=1In|Z| andy=arg Z + 2kn .
3. The equality refers to sets. If z eLnZ; and z, e LnZ,, then Z; =e*
and Z, =e”. According to the fundamental property of the exponential,
we have Z;Z, =e“"% hence z+ 2z, e LnZ; Z,.

Conversely, if zelLnz;Z,, then Z;Z, =€*. Let ustake z € LnZ;, and
note z, = z—z. Since Z; =e* =0, relation 2, Z, =% =e% e gives
Z, =e” ., Consequently, z, e LnZ, and ze LnZ; + LnZ,. &
4.19. Remarks. @) Theorem 4.18 suggests we better to write ze LnZ than

z=LnZ, which remains specific to the real logarithm. According to (8),

theset Ln Z isinfinite, but countable.
b) Using the complex logarithm we can define the complex power

76 =gstn? 9)
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§ I1.4. Power series

where ¢ eC and Z € C \ {0}. Obvioudly, this function is multi-valued too.

In particular, if ¢ :% for some ne N\{0, 1}, then the complex power vl

reduces to the n'" root, which is a set of n numbers. More exactly,

Z% :e% LnZ :e%[ln\z\+|(argZ+2k7r)] e%[ln\Z\JrlargZ] e%l KeZ.
Because 2ni is a period of the exponentia function, it follows that e¥'
takes only n distinct values, which correspondto k=0, 1, ..., n— 1.

c) A similar study of the complex trigonometric functions is left to the
reader. We just mention that the formulas of the real trigonometry remain
valid. In addition, it's useful to retain the formulas

siniz=isinhz; sinhiz=isinz;

cosiz=coshz coshiz=cosz,
which connect the circular and hyperbolic trigonometric functions.

Of course, not all properties of the real trigonometric functions are valid
in complex variables, e.g. sin and cos are not bounded any longer.

A typical problem about numerical series, which can be solved by means
of power series, concerns the evaluation of the sum. The following example
refersto real series, but later on we'll see that similar techniques, based on
the operations of derivation and integration of the terms, remains valid in
the complex framework.

4.20. Application. Evaluate the sum of the alternating harmonic series
t. oo n n
5= - _, 11 &
a0 N+1 2 3 n+1

The solution is based on the fact that sis the particular value, at X, =1, of

the power series

+..

f(x) = Z(—l)”ﬂx? .
n=1

Deriving f , we obtain the geometric series
- 1
f'(x)=> )" x"=—.
(9= 2=
By integrating f', wefind f(x)=In(1+ x)+C, where C= f(0)—-In1=0.

So we may concludethat s= (1) =In2.
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Chapter II. Convergence

PROBLEMS8II 4.

1. Find the radius of convergence and the sum of the following real power
series:
2n+1 3n+1

2 (x)\" ) ) n X
a)ngo(;j,o»o, b)Z(l) < )z(l) .

then deduce the sum of the numerlcal series:
, 00 n l , o0 _1 n
a)Z—n,a>1;b)Z;) o) ¥ 5D
n=0 & n+1’ a—o 3N+1
Hint. @) The geometric power series converges at | < a, hence the radius
of convergenceisR=«a . Thesumis

© (x\" o
f(X)=nZ::O (;j =

a—X

Deriving term by term in this series we obtain

00 n-1
n( x o

f/(x)= —(—) _

nz=:o a\a (@ —x)?
In particular, if x=1 < o, we find the answer to a’),whichis:
Z ——f D=
n=0 a" (o - 1)

b) R=1. Tofind the sum

0 X2n+1
9(x) = Z( 1) 1
we may first evaluate the derlvatlve
g <x)-z< I
l+x

then integrate, so that g(x) = arctanx + C. Using the value at x = 0 we can
identify C =g(0) —arctan0=0, and a x = 1 we find the answer to b’):

1" _ T
Z P l—g(l)—arctanl_4.

3n+1
1 , we obtain

¢) R= 1. Deriving the function h(x) = Z (- l)
n=0

h(x)—Z(l)” an_ 13:1 1 1 2-x

+= 5 -
1+x° 3 1+Xx 3 1-x+x

By integration we go back to
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§ I1.4. Power series

2x-1
fs

1
h(x) = +C,
(x) 3

where C = arctan

2. Find the discs of convergence and study the convergence at the frontier
points of these discs for the following complex power series:
2n+1 3n+1

2 (z\" ) ) nZ
a) g(gj ,a#=0; b) Z( )" il C) Z( 1 ik

Hint. Q) R=| a|, and divergence hoI ds whenever | z|> R

n

b) R = 1. If we note ¢ =—z2, then the series becomes Z
1=0 2n+1

theorem 4.12, it follows that this series converges at any ¢ on the circle of
equation | £ | = 1, except £ = 1. Consequently, the seriesin z is convergent
if |7 <1, except thepoints z, , = +1i.

c) R= 1. A reason similar to b) leads to divergence at the cubic roots of —1.
3. Establish the domain of convergence for the series:

)Zn+'2”; b)Zz—l; C)Z(nzl) oA Y
n=1 n: n=1 n: n=1 \

Using

e
Hint. a) o= lim nnH =0, hence R= =, i.e. the series converges on C.
n—oo
Jn!
b) Similarly to @), Deonv. = C, Since @ = lim ——=0
) ytod) n—o /(N+1)!
c) Applying (4) or (4') to a,=n"/ n!, we obtain = lim ——e hence
n—)oo\/_

R=1/e. We may use theorem 4.12 to find out the behavior at the frontier

nn

is

points. In fact, because (1+%) < e, the sequence of terms a,R" = .
nle
n

decreasing, while the Stirling’s formula lim J2rn=1 shows that

n—w nl en

lim a,R" = 0. Consequently, possibly except the point z=1/e, this power

N—o0
series is convergent at the other points where |z =1/e.

To clarify the nature of the series at the remaining point z=1/e, we have
to study the convergence of the numerical series
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0 nn
nZ::l e"n
With this purpose we reformulate the Stirling's result by saying that “for
every ¢ > 0 there exists np € N such that the inequalities

n

l-¢< n

nl g"

hold whenever n > ny “. Using the resulted relation

n" 1-¢

n e" g J2rn

in a comparison test, we conclude that the seriesis divergent at z=1/e.

Jern<l+eg

d) From lim " _ e wededucethat © =R=1. The sequence of terms

n—oo Wl
a - 1
"
Is decreasing, and lim a,, =0, hence the convergence of the power series

N—oo
holdswhen | z| = 1, possibly except z= 1. At this point we have divergence
on account of the relation
1

1 1
where 1/n isthe general term of adivergent series.
4. Functionf: (R R) >R, where R> 0, isdefined as the sum of the series
f()=ag +ax+axX +...+a,x" + ...

n-1

wherea, =a, = 1,and a, = ) aan_k_1 foral n> 1. Show that:
k=0

a) f(x)=iYi=4X.

2X
1
b) a,=—C. :
) n n+1 2n

c) Theradiusof convergenceisR=1/4;
d) The power series convergesto 2 at x = 1/4.

Hint. a) If we identify the coefficients of the series
f200) =by +bix+ by + ... +bX" + ...,
which represents the product of the series of f by itself, then we obtain the
relation b,_; =a,. In other words, we have
f20)=a +apx+ax +...+a, X"+ ...,
i.e. xf%(x) =f (x) — 1. This equation has two solutions, namely
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1++1-4x
fl’Z(X):T ,

but f (0) = 1 holds (in limit form) only for
(%) :1—\/1—4x _ 2 _
2X 1+ +/1-4x
b) Develop +1—4x asabinomial series

(1-4%) = S (4x)" 1-3-...(2n-3)
n—0 1 2"
and identify the coefficientsin the series of f , which becomes

f(X)=1+X+...+ + ...
on+l (n+ 1! 2
A simple calculation shows that
2"1.3-..(2n-) @) @2n) 1 cn
n- (n+1)! n(n+1)! [n]%(n+1) n+1 2n -

Q) o= lim2*L_4 D) limf(x)=2.
n—oo ap nT+

8. Evaluate a)Ln1; b)Ln(-1); c)Lni; dLnl+i;and e)i' .
Hint. Using (8) for Ln, and (9) for the complex power we obtain:
Ln1={2kri:keZ};
Ln (-2 ={ (7 + 2kn)i:k e Z}
Lni={(%+2k7r)i:keZ}
Ln (L+i) ={3In2+ (Z + 2kr)i ke 7}

=g _fe 2t KT e
6. Show that the complex sin and cos are not bounded. In particular,
evaluate the modulus of sin[x + i In(2++/5)].

Hint. Find the real and imaginary parts of the functions, e.g.
Sinz=sin(Xx +iy) =sinXxcosiy + siniycosx=sinxcoshy +isinh ycosx.

Consequently, we have |sinZ =\/sin2 X+sinh?y. It remains to remember

that the (real!) sinh is unbounded. In particular, | sin[x +i In(2++/5)] | = 2.
9. Establish the formulas

ArcsinZ =—iLn(iZ + V1- Z?), ArccosZ = -iLn(Z +vVZ? -1),
ArctanZ -1 LnlﬂZ , Arccot”Z . an—+! ,
2 1-iZ 2 Z-i
and solve the equation sin z = 2. Find similar formulas for hyperbolic
functions.
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Hint. ArcsinZ={zeC:sinz=2}. If we replace eiz:g in the Euler's
eiz_e—iz 5 1
formulasinz:T,thenwefind c=1Z++v1-Z“,and z==Lng.
| |
In particular, the solutions of the equation sin z= 2 have the form

ze Arcsinzz—il_n[i(zwé)]:{%—i|n(2¢J§) +2kn:keT}.

If we introduce the first determination by arcsin2= % —iln(2++/3), then

we obtain the “old” formula

) arcsin2 + 2k
Arcsin2= _ keZ.
T —arcsin2 + 2k
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CHAPTER I1l. CONTINUITY

§111.1. LIMITSAND CONTINUITY IN R

This section is a synthesis about the notions of “limit” and “continuity” as
they are learned in the high school (also referred to as lyceum). Such a
recapitulation naturally extracts the essential aspects concerning the notions
of limit and continuity for real functions depending of onereal variable.

As usually, the high school textbooks are thought like introduction to the
field of interest, and they are merely based on description of practical facts,
constructions, and direct applications. Their purpose is to offer some ideas
and models, which hold out enough motivation for a rigorous and extensive
study. Now, we suppose that these starting points are already known.

In particular, we consider that the following aspects are significant in the
textbooks on Mathematical Analysis, at the standard level in high school:
1.1. Remarks. a) The real numbers are not rigorously constructed, but only
described by their decimal approximations from Q; most frequently, the

fundamental algebraic and order properties are mentioned as axioms. The
representation of R asareal lineis currently used to help intuition.

b) The notion of continuity is studied with no reference to the specific
structure; its qualitative feature is obvious if compared with Algebra or
Geometry, but a strong relation to measurements is predominant. More
exactly, the neighborhoods Ve 77(xy), where X, R, are described in terms
of order and absolute value, using the condition to contain open symmetric
intervals, namely

Vo(Xo—é& X+ &) = {XeR:| X=X < &}
for some & > 0. The topological forthcoming structure is not mentioned at
al. In addition, aimost all proofs are based on some particular algebraic and
geometric properties of R, but not on the topological ones.

¢) The symbols =« are introduced before speaking about limits and
convergence, so they are directly related to the order structure of R. In
particular, £ areinvolved in the study of boundedness, as well asin the
notations (—«, a) = {xeR: x < a}, [b,+x), R, etc. (compare later to the
property of being compact). Similarly, the sign «o makes a purely formal

sense when we expressalimit, eg. /= lim x,, .
N—o0

Other remarks refer to the manner in which different classes of functions
are dealt with. For example, there is no mention that solving the practical
problems, or giving some examples, strongly depends on some previously
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constructed and “known” functions, which, at the beginning, are the so-
called elementary functions (as dready saidin §11.4.)

Besides the algebraic and order properties, which include the rules of
operating with inequalities, the following properties are essentia starting
points for the development of the mathematical analysis on R:

1.2. Fundamental Properties. a) (Cantor) For any bounded set in R there
exist the infinimum and the supremum in R.

b) (Archimedes) For every xeR there exists a unique integer ne Z such
that n< x<n+ 1 (called entire part of x, and noted [X]).

Proof. @ The problem of proving this assertion rises only for particular
constructions of R. In the axiomatic descriptions of R it is known as the

Cantor’s axiom.

b) The Archimedes property is sometimes considered as an axiom too.
However, in a framework like the present one, it is a consequence of a). In
fact, if we suppose the contrary, then n<x would hold for al neZ. This

means that Z is bounded, hence according to the Cantor’s axiom, there
would exist £=sup ZeR. Consequently, £—1<p < &must hold for some
pinZ,hence( <p+ 1. Becausep + 1 €Z too, thisisin contradiction to
the very definition £ =sup Z. &

1.3. Remarks. a) Taking the Cantor’s axiom as a starting point of our study
clearly shows that the Real Analysis is essentially based on the order
completeness of R. At the beginning, this fact is visible in the limiting

process involving sequences in R, which is later extended to the generd

notion of limit of areal function.

b) We remember that the notion of convergence is presented in a very
genera form in the actual high school textbooks. The limiting process is
essential in approximation problems, which naturally involve convergent
sequences and series. For example, in practice we frequently approximate

the irrationals, i.e. we operate with 1.4142 instead of J2, or with 3.14
instead of =, etc. In particular the Euler’s number

n
e= lim (l+ 1)
Nn—oo n
Is carefully introduced and studied in the most textbooks, including the
presentation in the form of a series
1 1 1
e=1+—+—+..+—+...

1 2 n!
c) Excepting the algebraic functions, whose values are obtained after a
finite number of algebraic operations, the evaluation of any other function
(generally being transcendent) requires alimiting process. For example, the
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values of €, log x, sin X, etc., as well as simpler expressions like v/x, ﬁ
etc., represent sums of some series. More particularly, let us say that we

have to evaluate f (X) = xﬁ at the point X, = 2. Primarily, we must reduce
the problem to rational powers, because f (2) isthe limit of the sequence
2, 21.7’ 21.73’
Finally, it remains to approximate the roots of indices 10, 100, etc.
Such problems clearly show that we need to extend the limiting process
from sequences, which are functions on N, to arbitrary functions. On this

way, n— oo isnaturally generalized to x—a € R.
1.4. Definition. Let f : D—R be an arbitrary function of a real variable

xeD cR, and let acR be an accumulation point of D (i.e. acD’). We say

that f hasthelimit /e R at aiff for any neighborhood V of 7 there existsa
neighborhood U of a such that at any xeD ~ (U \ a) we have f (X)e V. In
this case we note

C=1lim f(Xx).

X—a
If, inaddition, ac D and f(a) = ¢, we say that f is continuous at this point.
If f is continuous at any point ac D, then we say that f is continuous on D.
In practice it is useful to describe the existence of the limit in other terms,
asfollows:
1.5. Theorem. The following assertions are equivalent:

a) Thereexists /= Ilim f(X) ;
X—a

b) For any sequence (x,) inD \{a}, we have[ x, >aimpliesf(x,) — /];
c) Thelateral limitsexist,andf(a—0) =f(a+ 0).
In addition, if a, 7/ eR (i.e. they differ from + «), then these conditions
are equivalent to the following:
Ve>036>0suchthat[ xe D \{a} & [x—a|< §]=|f(X) - (|<e.
Proof. b) = a), more exactly ]a) = |b) : If f hasno limit a a, then for any

¢ e R there exists some ¢ > 0 such that for arbitrary 6 > 0, there exists some
xe(D\{a})n(a— 06, a+ o) for which [ f(X) — /| > &. In particular, let us

take 6 = % , Where ne N, and note by x, the corresponding point. It is easy

to seethat x, —»a, but f(x,) » ¢.
The rest of the proof is recommended as exercise. >

1.6. Remarks. @) Many properties, which are well known for sequences,
remain valid for the general notion of limit. As a model, we mention the
following rule of adding limits:
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Let us consider f, g : DR, where D cR, and let us fix acD’. If there

exist | = lim f(x), and k=Ilim g(x), then there exists lim (f + g)(x) too,
X—a X—>a X—a

and it equals| + k (respecting the rules of operating with + ).

b) A lot of limits in the textbooks express either continuity of particular

elementary functions, or their behavior at + . However, there are some

remarkable cases, called undeterminable, which cam be establish by using

the derivatives (e.g. I’ Hopital rules). We recall some of the most important:

lim apx" +ax" + ..+ a, _a

x>o hox" + b x" L+ .. +b,  Po

lim20%_1

x—>0 X

X
lim (1+1j = lim@+y)YY =e
X—>Fo0 X y—0

Xn
[im —=0(vn>1a>1
X—0 aX

lim xInx =0

Xx—0

. Inx
[im—=0
X—oo X

lim IN(1+ X) _

Xx—0 X
X

1

. a
lim
x>0 X
r J—
lim 1+x) -1
x—0 X
The most part of practical problems combine such “fundamental limits’,
in the sense that composing continuous functions gives rise to continuous
functions.
c) The evaluation of alimit is deeply involved in the notion of asymptote of
agraph. There are three types of asymptotes:
e The graph has ahorizontal asymptotey =1 at +oo if
dl=Ilim f(X) eR;
X—>00
e Thedstraight line x = aisavertical asymptote from the left, upwards
(respectively downwards) the graph, if

lim f(X) = ;
X—a
X<a

=lna(a>0)

=r (Vr eR).

e Thesdtraight liney = mx+ nisan oblique asymptote at +o if
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Im= lim EER*and dn= lim
X—w X X—>00

Similarly, we define the horizontal and the oblique asymptotes at —«, as
well as the vertical asymptotes from the right.

The most significant properties of the continuous functions are expressed
in terms of boundedness and intermediate values (see later compactness,
respectively connectedness). The following two results refer to the behavior
of the continuous functions on compact intervals.

1.7. Definition. We say that aset D — R isbounded iff thereexist a, b eR

such that D c[a, b]. In particular, [a, b] isacompact interval (i.e. bounded
and closed). We say that a function f: D — R is bounded iff f (D) is a
bounded set in R, i.e. there exist the lower and upper bounds :
m=inf {f(X):xeD} eRand M =sup {f(x): xeD} eR.

If m=f(x*)and M = f (x**) at some x*, x** €D, then we say that f
attains (touches) its extreme values (bounds).
1.8. Theorem. If afunction f: D — R is continuous on a compact interval
[a, b] <D, thenit isbounded function that attains its bounds on [a, b].
Proof. Let us suppose that function f is continuous but not upper bounded
on [a, b]. Then there exists a sequence (x,) in [a, b], such that the sequence
(f(x4))tends to + oo . According to the Weierstrass theorem, this sequence

has a convergent subsequence, say (xrlk ), for which f (xrlk ) = 400 too. Let

[f(x) - mx]eR.

usnote | = kIim Xp, and remark that | €[a, b]. Sincef iscontinuous at I, it
—®

follows that f(x, )— f(l)#+o. The contradiction shows that f must

have an upper bound. We similarly treat the lower boundedness.
To show that f attains its lower bound, let (&,,) be a sequence in [a, b],

not.
such that f(&,) = n,—> m=inf {f (X) : xe[a, b]}. Using the Cesaro’s

theorem, let us construct a convergent subsequence (§nk)—>1<e[a, b].
Sincef is continuous, we deduce that m= I(Iim f(gnk )= f(X).
—®

Similarly, we show that M = f(X) at some X [a, b]. &

1.9. Definition. Let f: D — R be a continuous functionon D cR, i.e.

¥ V3 suchthat ¥ [x-yl<8(xe)=|f(x) - f(y)<el.
xeD &>0 6(x,e)>0 yeD

If in this condition we can use some 6 (¢) for al xeD, i.e.

v 3 suchthat Vv _[x-y|<8(e)=|f(x) - f(y)<el,
e>0 6(g)>0 X,yeD

then we say that f is uniformly (briefly u. -) continuous on D.
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1.10. Examples. @) Function f: D—R is said to be Lipschitzean iff there

exists L > 0 (called Lipschitz constant) such that the Lipschitz’ condition
[T —F(y) [< LIx-y]|

holds at any x, yeD. It is easy to see that the Lipschitzean functions are u.-

continuous (e.g. functions with bounded derivatives, like sin, cos, etc.).

b) The polynomial functions P, of degree n>2 are not u.-continuous on R,
but they are u.-continuous on compact intervals.

¢) Thefunction 1 , defined on R (or on (0, 1], etc.) is not u.-continuous.
X

1.11. Theorem. If afunction is continuous on a compact interval, then it is
uniformly continuous on that interval.
Proof. Suppose by reductio ad absurdum that f: [a, b] > R is continuous,

but not uniformly continuous on [a, b]. Then there exists & > 0 such that
for any &, =l, where neN’, we can find some points x, , Y, < [a, b], for
n

which | X, — Yo | < 6y, but | f (X)) = (V) |= & . Making use of the same
Cesaro’s theorem (in two dimensions, since (., y») € [a, b]* cR?), let us
construct a convergent subsequence of (X,, Yyn), say (xnk Y, ), for which

we have &= lim x, €[ab] and n=limy, [ab]. In addition, we
koo X k—oo ¥

clamthat £ = n . Infact, the second term in the inequality
|E—nl<lS=Xq [+ X = Yn, || Yo —7l
can be made arbitrarily small for sufficiently large n.
The proof is achieved if we remark that the equality & = n contradicts the

hypothesis | f (X, ) = T (Yn, )| = £o- &
Finally, we remind the property of intermediate values, namely:

1.12. Definition. Let f: | - R be afunction, where | isan interval of R. We

say that f has the property of intermediate values on |, iff for any x;, X<,

and any ce (f (xy), f (X)), there exists some & e ( Xy, Xp) such that f (&) = c.

In this case, we aso say that f is a Darboux function (or, it has the
Darboux’ property), where c is called inter mediate value.

It is easy to see that f has the property of intermediate values if and only
if it transforms any interval from | into another interval.
1.13. Example. Function f: R — R, defined (using ac R) by

1 )

sin— if x=0
f(x)= X

a if x=0

IS not continuous, but it is a Darboux function iff ac[-1, +1].
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1.14. Theorem. Each continuous function is a Darboux function.
Proof. The assertion of the theorem can be reduced to the fact that for any
continuous function f: [a, b] >R which changes the sign at the endpoints

(i.e. f(a)- f(b)<0),thereissome & €[a, b] wheref (&) =0. To proveitin
this last form, we may divide [a, b] into equal parts and choose that half
interval on which f changes the sign, which we note 1. Dividing 1,, we
similarly obtain I, , and so on. To conclude, we may apply the principle of
included intervalsto find & . &

1.15. Remark. The above theorem assures the existence of at least one root
for the equation f (x) = 0, where f is continuous. More than this, following
the above proof, we can concretely solve such equations. More exactly, we
can approximate the solution up to the desired degree of accuracy (actually
done by the computer algorithms).

The same theorem is used to establish the intervals of constant sign of a
continuous function. In fact, according to this theorem, any continuous
function preservesits sign on the intervals where it is not vanishing.

1.16. Theorem. Let f: | = J be a continuous function, where | = R denotes

an interval, and J = f (I). This function is 1:1 if and only if it is strictly
monotonous. If so, f ™ : J — | is continuous and strictly monotonous too.
Proof. It is easy to see that every strictly monotonous function is 1:1.
Conversely, because any continuous function is Darbouk, it follows that the
property of being injective implies the strict monotony.

The inverse of any strictly monotonous function obvioudly is of the same
type. It remains to show that f ™ is continuous on J. In fact, if we remember
that the neighborhoods of any point in R contain intervals, then according

to the Darboux’ theorem, it follows that the continuous functions are
carrying intervasinto intervals. &

Later we will see how such properties concerning the limiting process
can be extended from the case of real sequences, and real functions of a
single real variable, to more general situations.
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PROBLEMSS8III.1.

1. Study the continuity and find the asymptotes of the function
xyt oo

x(1+ el ) if x<O

f(x)=+1 if x=0

et if x>0

Hint. f is discontinuous at 0.
2. Find the following undetermined limits:

1-/x

X2 +1+4x (14 X)) x|

a) lim P ; b) lim 5 ,
X—»00 /X + X —X X—»00 + X
X—>0 X Xx—0 X

Hint. a) Put forward the factor x. b) Use afundamental limit that leadsto e.
d) Function sin is bounded and In is increasing. d) Reduce to fundamental
undetermined limits using trigonometric formulas.

3. Therational function is defined as a quotient of irreducible polynomials.
Pick up the rational functions from the following:

a) cos(narccosx); b)[x] =entirepartof x; ) x—[x]; d) Vx;

o x|/x; fVx?+1; g€ h)sinx
Hint. @) Use the Moivre' s formulato show that this function is polynomial,
hence rational function (the single on the list). b) and ¢) have infinitely
many discontinuities (of the first type!). d) is not defined on R_ . €) The
guotient of irrational functions may be rational. However, if we suppose
that | x | / x = P(X) / Q(x), where P and Q have the same degree (since the
limit of P/ Q a o isfinite), then we are led to the contradiction

B P(x)

lim — =41 lim —==Kk.
X—>to0 X X—>Fo0 Q(X)

f) and g) idem. h) hasinfinitely many zeros.
4. A rea function f of one real variable is said to be algebraic iff there
exists apolynomial (of degree n, with a parameter x),

n
P(U) = D" ay (x)-u’,
k=0
where a; are real polynomias, such that P-f = 0. If not, f is caled
transcendent. Show that the rational functions as well as the roots (with

arbitrary index) of polynomias (in particular +/x and | x | = \/? ) are
algebraic functions while € and sin x are transcendent.
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Hint. If f = A/B, wetake P(u) = A—Bu; if f = WA, weuse P = A—u", etc.
On the other hand, the identity

ao(X) + a;(X)e + ... +a,(X)€" =0
Is not acceptable. In fact, it leads to lim ag(x) =0, hence a; = 0, and

X—>—00
similarly (after dividing by €9, a; = 0, etc.
In the case of sin we may reason by referring to the finite set of zeros,
namely {krz: ke Z}, and we similarly show that a, = O, ..., a,= 0.
5. Give examples of real functions having the properties:
a) They are defined on R but continuous at a single point;
b) They are defined and discontinuous at each xe R;
c) They are continuous at each irrational, and discontinuousin rest.
Hint. a) + x, depending on xe Q or not; b) + 1, similarly depending on the
rationality of x; ¢) Analyze the function:
1 : m
F(x) = S if X—FEQ
0 if xeR\Q.

(n) (n)
6. Let usnote f =fofo..of, wheae f: R>R. Show tha f is

continuous, periodical, respectively bounded for arbitrary neN’, if f is so.
(n)

In particular, evaluate lim f (X)if f(X) =sinx, at severa points x € R.
nN—oo
(n)

Hint. Function sin has the same intervals of monotony as sin. ThelimitisO

. . Mg
everywhere, since lim s n(—j =0.
N—o0
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In this section we aim to present the notions of limit and continuity in the
most general framework, namely for functions acting between topological
spaces. Therefore we expect the reader to be well acquainted with general
topological structures, in the sense of 8§ 1.4 at least. A good knowledge of
the high school handbooks, briefly sketched in the previous § I11.1, will be
also very useful.

To explain why this general theory is necessary, we mention that it offers

the advantage of taking along view over many particular cases that involve
mathematical analysis, and other forms of the idea of continuity. On the
other hand, the general theory is easily accessible since it naturally extends
the case of areal function of onereal variable.
2.1. Definition. Let (Z; 7) and (&, 6) be topological spaces, and let us
consider aset A = Z apoint ac A, and afunctionf: A > &/ We say that
an element le &is the limit of f at the point a, iff for any Ve 0 (1) there
exists Ue 7 (a) such that f (x)e V whenever xe U nA, whereU = U\ {a}. If
acA andf(a) =1, wesay that f is continuous at a. If f is continuous at each
ae A, we say that f is continuous on the set A.

If fiscontinuous on Z; is1:1, and f ™ &/ — & is continuous on &, then
f is called homeomorphism between the topologica spaces Z°and & In
other words, (Z; 7) and (&, 6) are said to be homeomorphic iff there exists
a homeomorphism between them.

2.2. Remark. The use of the same notation, namely lim, for more notions,
namely for the convergence of a sequences, as well as for that of limit and
continuity of a function acting between topological spaces, is naturaly
explained by the existence of some intrinsic topology on any directed set.
More exactly, if (D,<) is adirected set, and ¢ D, then D =D U{x} is
naturally endowed with its intrinsic topology in the sense of 1.4.5.(iv). In
addition, let (/) 6) be atopological space, and let f : D— </ beanet in &7~

It is easy to seethat | = Iiénf iff the prolongation f : D — < defined by

109= {lf(X) iiﬂf : _ z

IS continuous at « relative to the intrinsic topology 6 on D, and to the
initially considered topology 7 on o

In particular, the limit of a sequence f: N— </can be viewed as the limit
of its prolongation f, relative to an intrinsic topology 6 of N = N {eo},
where « ¢ N, and 6 has the values
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0(x) = {\/QN:XGV} if xeN
{\/gﬁ:ﬂneNsuchthatV :_>(n,oo]} if x=00.
Similarly, defining (if ag A), or modifying (if | = f(a)) thevalueof f at a,

such that f (a) = |, the existence of lim f(x) can be reformulated in terms
X—a

of continuity. Such a connection between convergence and continuity is
involved in the following property concerning the composed functions:

2.3. Theorem. Let (%] 1), (&, 0), (X, &) betopological spaces, in which we
takethepoints x e Z,ye &/, andz € X.

(i) Wenote 25 = 2\ {x}, & 0= & \{y}, and we consider that x € (Z75)’,
and ye (/o) ' 1f the functions f: 2y — &/, and g:& 0o —> X havethelimits

y=Ilim f(u) and z= lim g(v), then z= lim(go f)(u).
u—>X VoY u—>Xx

(i) If the function F :Z— &/is continuous a X, and the function G: &/ > X~
Is continuous at y = F (X), then the function Go F is continuous at x.

(iii) Each net (in particular sequence) is convergent iff all of its subnets
(subsequences) are convergent to the same limit.

Proof. (i) Toany V € {(2) there corresponds U € 6(y), hence We 7(x), such
that ueW N Z,impliesv =f(u)eU N &, and finaly (gof)(u)eV.

(i1) Similarly to (i), for each V € {(2) there exists U € (y), hence We 7(Xx),
such that ueW impliesv=F (u)eU , and finally (G- F)(u)e V. In addition,
we havey = F(X) and z= G(y), hence z= (Go F )(X).

(iii) Let (E, <<) be adirected set, and let 7 be the intrinsic topology of the
space 2= E = EU{$}, where $ plays the role of infinity to E. In asimilar
manner, let (D, <) be another directed set, and let & be the intrinsic
topology of &= D=D u{oo}. Finally, let the net f, : E— D be extended to

f:2—>& by
f(u) = fo(u) .if uekE
00 if u=%$¢E,
andlet go: D— X beextendedtog: & — X by
Jo(V) if veD
mw={°

Obviousdly, the net g, is convergent to z in the topologica space (X, ), if
and only if z= lim g(v). In addition, it is easy to see that f, is subject to

V—0o0

the Kelley’s condition [s] of subnetsif and only if o= Iirr]$ f (u). Using the
u—

Z if v=ogD.

above result on composed functions, it follows that z = lim(go f)(u),
u—

which shows that the subnet g, - f; is convergent to z too.
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The converse implication is obvious, because in particular, each net is a
subnet of itself, for which E = D, and f, the identity on D.
Of course, taking E =D = N, and $ = «, we obtain the similar property

for sequences. &

Simple examples (see problem 4 at the end of this section) show that the
rule (i) of composed limits cannot be formulated as simply as the rule (ii)
of composed continuous functions in theorem 2.3 from above. Of course,
other hypotheses are possible in (i) (see [DE], [FG], [G-Q], €tc.).

In order for us to complete the list of relations between convergence and
continuity, we introduce the following:

2.4. Theorem. (Heine). Let (&, 0), (X, £) be topologica spaces, and let
(D, <) beadirected set. Function g:& — X hasthelimit z= lim g(v) if

V=Y
and only if for any net f: D— &/, we have
yzliénf:z:lién(gof). (H)
Proof. According to theorem 2.3 about composed functions, fromy = i Sq f
andz= lim g(v) it followsthat z= lim(g- f).
VoY D
Conversely, let us suppose that the implication (H), usualy called Heine
condition, isfulfilled. Let us remark that the particular set
D={(V,v)ebO(y) x & :veV}
is directed by the order relation defined by
(U,u) < (V,v) & VcU.
The main use of (D, <) isthat the net f:D— &, defined by f (V, v) = v,
always converges to y. Finaly, according to theorem 2.3, z = |i Ign(g of)is
nothing but z= lim g(v). &
VoY
For practical reasons (e.g. approximation problems, modeling continuous
and deterministic systems, etc.), it is desirable to ensure the uniqueness of
the limit, whenever there exists one. This property of the limit turns out to
depend on the topologica structure of the target space of the considered
function (in particular net, or sequence). More exactly:
2.5. Definition. (Hausdorff axiom) We say that a topological space (&7, 6)
IS separated (Hausdorff, or T,) iff
[T,] For each pair of pointsy’, ¥/ € &/, wherey’=Yy/, there exist some
neighborhoods V'e 6(y’) and V'€ 6 (y'), such that V/ V' = & .
2.6. Theorem. A topological space (&7, 0) is separated iff for any other
topological space (Z, 1), and any function f: Z°— &7, which has a limit at
an arbitrary xe &; thislimit is unique.
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Proof. Let us suppose that (&, 1) is separated, and still there exists a
function f: 2— &%, such that both y’ = lim f (u) andy’ =lim f (u). Then
Uu—>X

u—>X

there exist U'e7(x) and U” ez (x) such that f (U)c V' and f (U")c V',
Because of [N,] and [Ns], we have U'~U" = @, contrarily to VNV = @.

Conversely, let us suppose that (&, 6) is not separated, and let Y, y' € &
be a pair of different points for which V'~V =@ holds for al V'e 6(y)
and V' < 0 (). If so, we may define the set

D={(V, V') e0(y)x0(y') x #: ye V'nV'},
which is directed by the product relation of inclusion
W,V u<v,V vy eV cU and V' cU”.

As usualy, we construct 2= D U {o}=D and endow it with its natural
topology 7. Consequently, the function (more exactly the net) f: D — &, of
valuesf(V', V', y) =y, hastwo limits at «, namely y’ and y" . &

By extending the function (and its inverse) from points to sets, and to
families of sets, we obtain other forms for the notion of “continuity”:

2.7. Theorem. Let (2, 7) and (&7, &) be topological spaces. If f: Z— &,
then:

(a) fiscontinuous at ac Ziff f < (3(f(a)))cr(a),

(b) f is continuous on Ziff [ f < (A) is open (closed) in 2'whenever A is
open(closed) in &/],
(c) f is continuous on Ziff [for any Ac % ac A impliesf(a)e f(A)],i.e.
f(A)c f(A).

Continuity is useful when we need to compare topologies, or to obtain
new topologies (e.g. on a subset, product space, quotient space, etc.):
2.8. Standard constructions. 1) Let T and 9 be two topologies on the
same set &7 We say that t is coarser (smaller, etc.) than 9 (which is finer,

greater, etc. than 1) iff the identity u &g — &, is continuous, where the
indicest and 9 represent the topologies considered on &°. Since this means
that t(X) < ¢ (X) holds at each xe &, we may notetc 9.
2) Let (Z, 1) be atopological space, and let a subset 5/ Z’be endowed
with atopology 9. We say that (&7, 9) isatopological subspace of (%7, 1)
iff 9 isthe coarsest topology for which the canonical embedding

e Y>> A
defined by e(y) =y € Za eachy € &, is continuous on &/, Alternatively,
Hc &is $-openiff H= G & holds for some t-open set G &
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3) Let (7, 1) and (&, $) be topologica spaces. The product topology ¢
on X' = &x & is defined as the coarsest topology on X for which the
projections Py : X— &, and P, : X— &7 are continuous (remember that the
projections are defined by P (X, y) = xand Py (X, y) = y).

In order to construct the product topology, we mention that for each pair
of neighborhoods V er(x), and Ue 3(y), the cylinders Px_l(\/) and

Py 1(U) represent { — neighborhoods of (X, y) e £, hence We (X, y) holds

exactly when W contains arectangle of the form Px‘l(\/) N Py‘l(U ).
4) Let (27, 1) be atopological space, let ~ be an equivalence on &; and let
Z = 7’|~ be the guotient space. The finest topology on Z , for which the

canonical application ¢ : & — Z is continuous on Z’, is called quotient

topology. It is frequently noted 7. We remind that that the canonical

application in the construction of the quotient space is defined by
p(¥)=X={yeZ:y~x%

at al xe 2. In other words, if V € 1(x), then V e ().

These “standard” constructions of a subspace, a product space, and a
guotient space, confer special roles to the specific functions of embedding,
projection and quotient, as shown in the following propositions 2.9 to 2.11.
2.9. Proposition. Let (27, t) and (&7, &) be topological spaces. The
functionf: A—> &, where @ = Ac <, ist — 9 continuous on A iff it is
continuous on A relative to that topology o, which makes it a topological
subspace of &

Proof. For any ac A we have Ve o (a) iff V= WnA for some We1t(a),
hence f and fo1 are simultaneously continuous. >

2.10. Proposition. Let (¢7, o), (27, 1) and (&7, ) be topological spaces,
and let X'= Zx &/be endowed with the product topology C. Then function
f: /> L'is continuous at s € o7 (respectively on &) iff their components
fx = Py of, and f, = P, of are continuous at s (respectively on ).
Proof. Since P, and P, are continuous on X”, according to the previous
proposition, f, and f, will be continuous.

Conversely, let the functions f, and f, be continuous a s € </ and let W
be a neighborhood of f (s) = (fx (9), fy (5)) €X . According to the
construction of the product space, there exist U € t(f, (), and Ve 3 (f, (9))

such that WU x V. The continuity of f, and f, shows that f (U) e o(s)
and fy~ (V) eo(s). Itiseasytoseethat for L= (U) N fy (V) ea(s)
we havef(L) cW. &
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2.11. Proposition. Let (27, t) be atopological space, and et (/Ef,f) be the
guotient topological space corresponding to the equivalence relation ~ on
Z M (&, 9) is another topological space, then f: & — & is continuous

on Z iff fo @ is continuous on &; where ¢ is the canonical application of
the quotient space.
Proof. We may directly refer to construction 2.8.4). The topology 7 is so
defined such that the function ¢ :2— Z is continuous, hence the assertion
“f continuous’ obviously implies“fo ¢ continuous’.

Conversely, if fo ¢ iscontinuous on &, then at each point xe &; we have

Ve 3(f op(x)) = (f o) (V) e 2(X).
Obvioudly, (fo @) (V) = ¢ < (f (V). Because f < (V) is a neighborhood
of X in some topology of &, and 7 is the finest topology for which ¢ is

continuous, it follows that f <~ (V) € 7 (R). Consequently, the function f is
continuous a x, which is arbitrary in &~ >

In the remaining part of this section we study two of the most important
topological properties of sets, namely connectedness and compactness. We
remind that these notions have been partialy studied in lyceum, because in
R, connected means interval, and compact means closed and bounded.
2.12. Definition. The junction of two subsets A and B of a topological
space (<4, 1) isdefined by , 7 (A, B) = (AN B)U(ANB).

If .7(A, B) = @, we say that A and B are separated. A set Mc &/ is said
to be disconnected iff M = AUB, where Ax@=B, and A and B are
separated. In the contrary case, we say that M is connected.

It is useful to recognize some particular connected sets:

2.13. Theorem. In the Euclidean topology of R, M is connected iff it is an
interva (no matter how, closed or open).

Proof. Let us assume that M is connected. The fact that M is an interval
means that for any X, ye M, x <y, we have [X, y]c M. If we suppose the
contrary, i.e. M isn't interval, there exists ce(x, y) \ M. Using ¢, we can
construct the sets A= {xeM : x< ¢}, and B = {xeM : x> c}. Obvioudly,
M= AUB, Az@=#B and .7 (A, B) = @, hence M should be disconnected.
The contradiction shows that M must be an interval.

Conversely, let us show that any interval | R is connected. Assuming
the contrary, we can decompose | into separate parts, i.e. | = AuUB, such
that A= @+ B, and , 7 (A, B) = @. If s0, let usfix ac A and beB, say in the
relation a < b. Because | isan interval, we have [a, b] cI. In particular, also

c=sup (AnJ[a, b])el. Two cases are possible, namely either ce A, or ceB.
Finally, we show that each one is contradictory.
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Case ceA. Since 7 (A, B) = @, we necessarily have ¢ < b. On the other
side, (¢, b] NA=@. Because | isan interval, it follows that (c, b] < I, hence
(c, bJ= B. Inconclusion, ce , #(A, B) =@, which is absurd.

Case ce B. By its construction, ce A, hencec o7 (A, B) = @ again, so
this caseis also impossible.

To conclude, the assumption that | is not connected is false. >

2.14. Theorem. Let {M, : ac o/} beafamily of connected sets. If the sets
M, are pair wise non-separated, i.e. ,7(M,, My) =@ whenever a=f, then
theunion M = U{M, : ae ¥ } isaconnected set too.

Proof. Let us suppose the contrary, i.e. M = Au B, where A and B are non
void and separated. Because each M,, is connected, we have either M, A,
or M,c B for al ae ¥ (otherwise the sets M, A and M, B would be non
void and separated components of M,,, which contradicts the connectedness
of M,). Now, using the monotony of the junction relative to the relation of
inclusion, we obtain @ # 7 (M,, My) < .7 (A, B) = &, whenever M,c A
and M, c B, contrarily to the hypothesis. >

2.15. Theorem. Let (Z, 1) and (&, $) be topological spaces, and let the
set Mc Z’be connected. If f: & — &/is continuous on &, then f (M) is
connected in &

Proof. If we suppose the contrary, then we may decompose f(M) = A U ‘B,
such that 2= @= B, and . 7(A, B) = @. Consequently, the inverse images

of A and B, namely A= Mnf () # G, andB= Mnf (B ) 20,
realize the decomposition M = Au B. Since f is continuous, we have

J(AB) c T (. /(A, B)) =0,
which contradicts the hypothesis that M is connected. >

2.16. Corollary. Every rea continuous function on R (endowed with the

Euclidean topology) has the Darboux property.

Proof. The Darboux property claims that the direct image of any interval is
aso an interva. According to theorem 2.13, we may replace the term
interval by connected set, and then apply theorem 2.15. >

2.17. Remark. We may use the above results to construct connected sets,
e.g. continuous arcs in the complex plane, open or closed discs, sets
obtained by taking the adherence of connected sets, unions, etc.

Another useful notion in this respect is that of connectedness by arcs.
More exactly, M is connected by arcs iff for any two points x, ye M there
eXists a continuous arc v, of end-points x and y, which is entirely contained
in M (a continuous arc is the image through some continuous function of
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an interval of the real axis). We mention without proof that, for open sets,
the conditions connected and connected by arcs are equivalent.
2.18. Definition. Let K be a set in a topological space (<7, 1), and let 55'be
the family of all open sets in &% By open cover of a set Kc o/ we
understand any family o</ &'whose union coverskK, i.e.

Kcu{G: Ge}.
We say that K is a compact set iff from every open cover o< of K we can
extract a finite sub-cover, i.e. there exists a finite sub-family 93c o7, for
which asimilar inclusion holds, namely

Kc u{G: Ge %}.
2.19. Examples. a) We may easily obtain open covers of a set starting with
open sets conceived to cover only one point. On this way, in R, we find out
that the set A = {1/n : neN'} is not compact. However, the set AU{0} is
compact, because covering 0, we cover infinitely many terms of A.
b) The finite sets are compact in any topology of an arbitrary space.
c) Each closed interval [a, b] R is compact. More generaly, any closed
and bounded set in R" is compact.
d) The Riemann sphere is not compact because it isn't closed (see 1.2.22).
If we add the “North Pole” N (<> «), then & U{ N} («> C) is compact.
e) The spaces R, C, and generally R" are not compact, but R= RuU{+w}
and C = Cu{x} are compact.

The main property of a compact set refers to the transfer of this property
to the image through a continuous function. In particular, if f .1 >R is
continuous and Kc I R is compact, then f is bounded on K and it attains
its extreme values. This property turns out to be generally valid, i.e. it holds
if wereplace R by arbitrary topologica spaces, namely:

2.20. Theorem. Let (%, 1) and (&, &) be topologica spaces, and let K
be a compact set in &. If the function f: 2 &/is continuous on &; then
theimage f (K) is acompact set in &/.
Proof. Let ~</be an open cover of f(K), and let us consider

U ={f(G): Ge o=/},
Since f is continuous, 7/ represents an open cover of K. Let 9" < 7/ be a
finite sub-cover of K, which exists because K is compact. It is easy to see
that the corresponding subfamily of images

B={f(X): X eV} c oA
isthe finite open cover of f(K), which we are looking for. &

We can express many genera properties of the compact sets in terms of
convergence. The analysis of such aspects is based on some properties of
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closed sets and operator “adherence” expressed in terms of convergence, as
partialy contained in Theorem I1.1.5. In addition we mention:

2.21. Lemma. Let (x,) be a sequence in a topologica space (<, 1). If none
of its subsequencesis convergent, then all the sets Gy = &'\ { X, Xkt1 » ---}
where keN, are open.

Proof. If we suppose the contrary, then some point xeGy is not interior to
Gk , i.e. any neighborhood Ve 1(x) contains terms X, of the sequence, of
rank n>k. It follows that x is adherent to {x,}, and by Theorem 11.1.5.(i), x
should be the limit of some sequence in the set {x,}. Obviously, this
sequence can be arranged as a subsequence of (x,), contrarily to the
hypothesis that such subsequences do not exist at all. &

Now, from compactness we may deduce properties of convergence:
2.22. Theorem. If K is a compact set in the separated topologica space
(¢, 1), then the following properties hold:
a) Kisclosed, and
b) For any sequence (X, in K (i.e. x,eK for al neN), there exists a
subsequence (xnk ), convergent to some xeK (when we say that K is
sequentially compact).
Proof. A) If we suppose the contrary, i.e. K = K , it follows that there exists
some xe K \ K (the converseinclusion, K< K , always holds). According to
condition [T,], for every yeK, y = x, there exists a pair of neighborhoods
Vye1(X) and Uyet(y) such that ViU, = @. Since K is compact, there exists
afinite set of points, say {yu, Yz, ..., yo} <K, such that K U{U, : k=1,n}.

On the other hand, the neighborhood V = ﬂ{Vyk : k=1,n} etx(x) has no

point in K , contrarily to the hypothesis xe K . To avoid this contradiction,
we have to accept that K =K, i.e. K is closed.

b) Supposing the contrary again, let (x,) be a sequence in K, such that no
subsequence is convergent to some xeK. Because K is compact, hence just
proved closed, the subsequences of (x,) cannot be convergent in &/ (see
Theorem 11.1.5(ii)). Now, let us construct the sets Gy asin the lemma 2.21,
which form an increasing sequence, i.e. Gy Gy.; holds for al keN. On the
other hand, { G} forms an open cover of K. Using the compactness of K, let
G, be the greatest element of a finite sub-cover of K, hence G, oK. This
relation contradicts the fact that x,eK, but x,¢ G,,. Consequently, the initial
supposition isimpossible, i.e. sequence (x,) cannot ever exist. &

It is easy to see that finite unions and arbitrary intersections of compact
sets are compact too. The problem of compactness of an arbitrary Cartesian
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product is more difficult, except the case of afinite family of compact sets,
which isrelatively simple:
2.23. Theorem. Let (2, 1) and (&7, $) be topological spaces, and let their
Cartesian product X = Zx & be endowed with product topology (. If the
sets Kc Zand L &7 are compact, then K x L isacompact setin X.
Proof. Because any open set in (X7, {) is a union of sets of the form G x F,
where G isopen in (27, 1) and F isopen in (&, 3), it follows that each
open cover o<7of K x L generates another open cover, say
oo/ ={GxF:(i,]j)eP},

where Pc | x J, and |, J are certain families of indices. It is clear that family
{Gi: (i, J)eP} isan open cover of K, while{F;: (i, j)P} is an open cover
of L. Consequently, using the hypothesis concerning the compactness of K
and L, we find finite subfamilies I, | and Jo< J, such that the sub-families
{Gi :ielo} and {F;: jeJg} are open sub-covers of K, respectively of L. In
conclusion we see that the family

oty ={Aec/: Ao G x F; for some (i, j) €lox Jo}
isafinite open sub-cover of o7 hence K x L is compact. &

2.24. Remarks. (i) Using the above results on compactness we can easily
construct particular compact sets. For example, the compact setsin R are

finite unions of closed intervals; the continuous arcs, which contain their
end-points, are compact setsin C ~ R?, or generally in R"; the closed balls,

and closed parallelograms, etc. For more examples and details in Euclidean
spaces, we recommend the reader to see the next section.

(i1) A lot of assertions reveal properties (e.g. “point a is adherent to A", “M
Is connected”, “K is compact”), which are invariant under continuous
transformations, i.e. they remain vaid for images through continuous
functions. In general, such properties are said to be topological, and
topology itself is defined as their study (compare to geometries!).

(iii) It is easy to see that important topological spaces like R, C (~ R?), and
generally R" (thoroughly discussed in the next section), are not compact.

Because of many convenient properties of the compact spaces, especially
involving continuity and convergence, a natural tendency of transforming
such spaces into compact ones has risen. This process is frequently called
compaction, and usualy it consists of adding some new elements (called
points at infinity) to the initial space (e.g. +oo and —oto R, « to C, etc.)
such that the forthcoming space becomes compact.

2.25. Comment. The above topological structures represent (in the present
framework) the most genera structures of continuity. There are many
extensions of these structures, but according to the main purpose of this
book, later on we pay more attention to the metric, normed, Euclidean, and
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other particular spaces, where the concrete (i.e. numerical) measurements
are eloquent.

From a genera point of view, we can say that topology is a qualitative
theory if compared to geometry, algebra or other branches of mathematics,
physics, etc. The specific topologica concepts like convergence, continuity,
compactness, etc., express properties that cannot be measured, or described
by numbers, because in fact, they represent conclusions of infinitely many
measurements, and infinite sets of e ements (e.g. numbers).

Choosing some topology as a mathematical instrument of studying a
particular phenomenon is an evidence of the investigator's belief in the
continuous nature of that problem. The comparison of the theoretical
results with the practical experience decides how inspired is the continuous
vision of the problem. Obvioudly, this point of view is not always adequate,
I.e. there exist many non-continuous aspects in nature, which need other
kind of mathematical structures to be modeled. By philosophical duality,
the essentia feature of these problems is discreteness. Nowadays, discrete
phenomena represent the object of the discrete system theory, including the
computer engineering.

If we limit ourselves to topologica structures, then the sense of discrete
reduces to “space endowed with the discrete topology”, that is an extreme
case when any subset of the space is open. From this point of view, each set
may be considered discrete, which however is not always the case. On the
other hand, the continuous sets are thought as “compact and connected”,
which have no discrete counterpart. So, we may conclude that it is difficult
enough to develop the great idea of a “continuous-discrete dualism of the
world” exclusively using topological structures. Therefore we need a larger
framework, where some structures of discreteness are justified to be dual to
topologies, but not particular topologies. Without going into details, we
mention that such structures have been proposed in [BT3]. In brief, the idea
is that, instead of defining a topology t by filters t(x) of neighborhoods at
each xeVe1(x), to consider a dua structure, called horistology, which is
specified by ideals of perspectives y(x), such that xg P whenever Pey/(X).
The terminology is naturally inspired from relativity theory, where super-
additivity is accepted as areal physical fact.

The coexistence of continuity and discreteness in the real world, which is
reflected in the topology — horistology dualism, is also met at many other
particular levels, defined by metrics, norms, or inner products. Respecting
the traditional framework of the classical Anaysis, we shall not discuss
about horistologies any further, and we let the reader to appreciate whether
such qualitative structures are useful to study discreteness.
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PROBLEMS §1lI. 2.

1. Let (D, >) beadirected set, and let f, g : D— R be nets. Show that:

(i) If the net f is monotonic (i.e. f (d)<f (e) whenever a<d<e for some
o€ D), and bounded (i.e.3MeR such that f (d)<M whenever d>a), then f
Is convergent (the limit being always unique in R);

(i) If f and g are convergent nets, and f (d)<g(d) holds a any d>a for

some a.eD, thenaso limf < limg;
(iii) If the nets f and g are convergent to the same limit I, and h: D—>R is

another net for which f (d)<h(d)<g(d) holds at any d>a. for some aeD,
then his convergent to | too.
Hint. Repesat the proof of the similar properties for real sequences.

2. Show that any closed part F, of a compact set K, is compact. Analyze the
case KcR and F = KnQ, where F, generally not closed any more, is

dternatively referred to asapart of R and Q.

Hint. If o=/is an open cover of F, then «=# U{CF} is an open cover of K.
The open sets in topology of QQ are intersections of the form Q NG, where
GisopeninR.

3. Letf: (a, b) >R beacontinuous function. Show that:

(3 lim f(x) eR, 3 Iimbf(x)eR): (f is bounded).
X—>

X—a
|s the converse implication generally valid?
Hint. f can be continuously prolonged to the compact [a, b]. Consider the
exampleg: (0, 1) >R, whereg(x) =sinx ™",

4. Compare lim g(x) to lim(geo f)(x) if the functionsf, g: [0, 1] > R
x—0 x—0

have the valuesf(0) = g(0) = 1 and f (x) = g(x) = 0 at each xe (0, 1].
Hint. lim g(x)=0, while lim(go f)(x)=1.
x—0 x—0

5. Show that for each pair of compact (connected) sets A, Bc T (i.e. R or
C), the sets A+ B, and AB are also compact (connected). Comment A : B.

Hint. Use the fact that the operations of addition and multiplication are
defined by continuous functions on the product space.
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It is easy to see that each contraction of a metric space </ is continuous

on this space relative to the intrinsic topology. More than this, because in
metric spaces we can “correlate”’ the neighborhoods of different points by
considering that the spheres of equal radiuses S, r) and Sy, r) have the
same size, we deduce a possibility to compare the continuity at different
points. Based on this feature of the metric spaces, we remark a uniform
behavior of the contractions from the continuity point of view. These ones,
and many similar cases lead us to consider the following type of continuity
in the metric space framework:
3.1. Definition. Let (Z; p) and (&, o) be metric spaces, and let A be a
(non-void) subset of &7 We say that the function f : A— & is uniformly
continuous on A iff for any &> 0 there exists 6 > 0 such that the inequality
o (f(x), f(y)) < € holds whenever p(x, y) < é. In particular, afunction can be
uniformly continuous on the entire space &

The following theorem is frequently used to establish that some functions
are uniformly continuous.

3.2. Theorem. Let (& p) and (&, o) be metric spaces, and let Kc & be a
compact set. If the function f: K— &/ is continuous on K, then it is aso
uniformly continuous on K.

Proof. The continuity of f at x allows us to assign some 6, > 0to each £> 0,
such that p(x, y) < o, implies off (X), f(y)) < &/ 3. Since K is compact, and
the family oo/ = {YX, %&)Z xeK} is an open cover of K, it follows that
there exists afinite set { Xy, X, ..., Xo} < K (hence afinite sub-family of o</)

such that K< U{S(x;, %Sx): i=1, 2, ..., n}. Consequently, for each xe K we
can find some ie{1, 2, ..., n} such that p(x, x) <%5Xi <&y , and so we
secure theinequality off (x), f(x)) <&/ 3.

We claim that 5=%min{ Oy I=1, 2, ..., n} isright to fulfill the condition

of uniform continuity of f. In fact, let us arbitrarily chose x, ye K such that
o(x,y) <o, andleti,| {1, 2, ..., n} beindices for which the inequalities
p(X,Xi)<%5Xi and p(x,x-)<%5xj arevalid. It follows that

P, %) < px, %) + p(x, y) + ply, %) <max{ Sy Oy, },

which shows that f (x, X)) < &/ 3. Finaly, using the inequality

o (f(x), f(y)) < o (f(x), f(x)) + o (f(x), f(x)) + o (f(x), f(¥))
we deduce that o (f(X), f(y)) < e whenever p(X, y) < 6. >
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3.3. Remark. So far we referred to the size of the neighborhoods in metric
spaces when we discussed about fundamental sequences and about uniform
continuity. We mention that such aspects are specific to the so caled
uniform topological spaces. In this framework, theorem 3.2 from above
takes avery general form, as follows:. If 2" and &7 are uniform topological
spaces, Ac Z’is compact, and f : A— &/ is continuous on A, then f is
uniformly continuous on A.

Another example of specific topological properties, which rise in metric
spaces, refers to compactness. In fact, compact sets are always closed, but
in addition, in metric spaces they are also bounded. More exactly:

3.4. Proposition. If (&, p) is a metric space, and K< o is a compact set
relative to the corresponding metric topology 7, then K is bounded.
Proof. Let us consider the following family of open spheres

oo/ ={9X, n): neN},
where x is fixed (in K, say). Because «<7 covers any subset of <7, and K is
compact, it follows that K has a finite sub-cover oc/". In addition, n<m
implies S(x, N)= S(x, m), hence the greatest sphere from «<# ~ contains K.
The existence of such a sphere meansthat K is bounded. &

The possibility of expressing compactness in terms of convergence is an
important facility in metric spaces. To develop this idea, we will consider
other types of compactness, namely:

3.5. Definition. A set K in a metric space (¢, p) is said to be sequentially
compact (briefly s.c.) iff each sequence (x,) from K contains a sub-
sequence (xnk ), which is convergent to some X, e K.

We say that the set Kc &7’ is ¢ — compact (briefly € —c.) iff forany e >0
there exists afinite family of open spheres of radiuses ¢, which coversK.
3.6. Examples. (i) Every compact set is s.c. as well as ¢ — c. (obvioudly).
There are till & — c. sets, which are not compact, as for example

K= { %: neN},
in R, relative to the Euclidean metric.
(if) The & — c. sets are bounded, since the union of two spheres is contained
in a greater one. The converse is generally false, i.e. boundedness is not
enough for &— compactness, as in the case of the balls in Cg([a, b]),
endowed with the sup norm.
(ii1) The same set K from the former example (i) shows that the & — c. sets
are not necessarily s.c. However, the converseisvalid, namely:
3.7. Proposition. Let (&, p) be a metric space. If Kc &7 is a sequentialy
compact set, then it is also € — compact.
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Proof. Let us suppose that, by contrary, there exists some ¢ > 0 such that K
cannot be covered by finite families of open spheres of radius . Then,
starting with an arbitrary xoe K, and this &, we can find the elements
1€ K\ SXo, €), e K\ [S(Xg, &)U (X, €)], ...
The resulting sequence (x,) has the property that p(x,, Xv) > & holds for all
n, me N, which makes it unable to contain convergent subsequences. <>

To establish the main result concerning the compact sets in metric spaces,
namely the equivaence between compactness and sequential compactness,
we need the following:

3.8. Lemma. If Kisas.c. set in ametric space (7 p), and <7 is an open

cover of K, then there exists ¢ > 0 such that for all xe K we have %, ¢) c A
for some Ae o7 .

Proof. Let co7={Aie & : iel} be acover of K, and let us suppose that the
assertion isn’t true, i.e. for any ¢ > 0 there exists xe K such that %, &)z A

holds for al i<l. In particular, taking ¢ = % where neN’, we find x,eK

such that §(x,, %)czAi for al iel. Because K is supposed to be s.c, the
resulting sequence (x,) contains a subsequence, say (xnk ), convergent to

some & K. Let jel be the index for which & € A. More that this, because
A is open, we have S &, r)c A for somer > 0. On the other hand, from the

convergence of (xnk) to £ it follows that Xpn, e Y, %) holds if k overpasses

certain value ky. If we take k great enough to obtain ni<£, then finally
k
S(xnk, ni)g S&, r) c A, contrarily to theinitial hypothesis. >
k

3.9. Theorem. A set K in ametric space (¢, p) is compact if and only if it
IS sequentially compact.
Proof. Each compact set in &7’ is s.c. since the metric spaces are separated.
Conversely, let us suppose that Kc &7 is sequentially compact, and let
oo/ ={A:1el} bean open cover of K. Using the above lemma, let £¢> 0 be
the number for which to each point xeK there corresponds je| such that
Sx, ) < A. Finaly, to obtain the necessary finite sub-cover of K we may
proceed asin proposition 3.7. &

3.10. Corollary. Every closed and bounded interval [a, b] c R is a compact
set (relative to the Euclidean topology of R).

Proof. In terms of compactness, the Cesaro-Welerstrass theorem (e.g. see
11.1.19) saysthat [a, b] is sequentially compact.

Because the Euclidean topological spaces are particular metric spaces,
there are specific properties in addition to the metric ones, as for example:
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3.11 Theorem. A set K = I'", where neN', is compact if and only if it is
closed and bounded.
Proof. The compact sets are closed in any separated topological space.
They are bounded in each metric space (see proposition 3.4. from above),
hencein I'" they are closed and bounded.

Conversely, if K is bounded, then K< S(O, r) holds for some r > O.
Because S(0, r) is sequentially compact, and K is a closed part, it follows
that K itself is s.c., hence, according to theorem 3.9, it is compact. &

The following theorem shows that the compactness of the closed and
bounded sets is specific to finite dimensional spaces:
3.12. Theorem. Let (<, || . ||) be alinear normed space, and | et
K=S(0,r)={xe Z:|||<1}
be the closed unit ball. If K is compact, then dim Zisfinite,

Proof. Because V = S0, %) iIsopen, and o7 = {x + V : xeK} coversK, it

follows that there exist Xy, Xo, ..., X, € K such that

Ke x+V)uetV) u...uatV).
If <o =Lin{Xy, X, ..., Xn} denotesthe linear space spanned by these vectors,
then dim Z,<n, hence it is closed in < as a finite dimensiona subspace.

Because2V c K c % +V, and A %y < < for every 4 = 0, we obtain the

inclusionV c % + %V, and successively

Kc 3’0+%VC %+%VC o C Lo+ 2"V o L.

Consequently, Kc %= Z. Since A % < <, for each AeT’, and Kc %,
wehave I' - K < Z. Ontheother hand, I"- K = &, i.e. for every xe Z'there

exist 1 eI (eg. 2 = |]x]| ) and X eK such that A X = x. Consequently, we
deducethat <& < %, hencedim £ < dim % < n. &>

3.13. Remarks. a) The above theorem remains valid in the more general
case of topological vector spaces, i.e. any locally compact topological
vector space (that has a neighborhood of the origin with compact closure)
has finite dimensions.

b) Using the above results we can find more examples of compact sets. In
particular, if a=(ag, @y, ... , a,), b= (by, by, ..., b,) €R", then the closed
n-dimensional interval [a, b] =[as, bi] X ... x [a,, b,] isacompact set in R".
Since the notion of interval is based on order, this construction doesn’t
work in the complex space C". However, using the above theorem 3.12 in

the case <& = I', we obtain a similar examples by replacing the closed
intervals by closed spheres.
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c) Other specific properties in Euclidean spaces, besides those involving
compactness, derive from the fact that I'" represents a Cartesian product. In
addition, the Euclidean topology of I'" can be considered a product
topology of I, n times by itself. Therefore, plenty of properties concerning
the limiting processin I'", e.g. continuity and convergence, naturally reduce
to similar propertiesin I'. In order to make more explicit this fact we have
to precise some terms and notation:

3.14. Definition. Let X« @ be an arbitrary set, and f : X — T, be a vector
function for some neN'. As usually, we define the projections Pr : I"—>T

by Pr(ys, ..., Yn) = Y« for al k=1n. The functions f, = Pryof , where
k=1,n, are called components of f, and for every xe X we note

f() = (F109), F23), ..., fu(X)).

If fisa (generalized) sequence, i.e. X = N (or adirected set D), then the
components of f are called component sequences, and the general term of
the vector sequence is noted f (p) = Y, = (Yo, ..., Yp) for each peN.
Alternatively, the sequence is written as the set of n component sequences,

namely
Vo) = ((¥p), - (¥p).

In particular, if n =1, and I' = C = R? the components of f are named
real and imaginary parts of f. Most frequently, f is defined on a domain
(i.e. open and connected set) D C, and we notef:D — C, where

f(2 =Py +iQkxYy)
aanyz=x+iyeD.Inbrief,f=P+ iQ,whereP=Ref andQ=Im f
are the components of f.

If fis a sequence of complex numbers, i.e. f(n) =z, = x, + iy, €C is
defined at any ne N, then (x,) is the sequence of real parts, and (y,) is the
sequence of imaginary parts of f (aternatively noted (z,)).

3.15. Theorem. Let (X, 7) be a topological space, and let f: X—>T" be a

function of componentsfy, ..., f,. If Xo e Xisfixed, then:

a ¢ =(lq, ..., 0,) e I'Misthelimit of f at X, iff each component 7 isthe
l[imit of f at X, , and

b) fiscontinuous at X, iff each fy is continuous at this point.

Proof. @) We may either extend the proposition I11.2.10 by induction upon

neN’, or directly involve the Euclidean metric p of I'", namely

p(l,y) = JZVk—YHZ,

k=1
where ¢ = (/1, ..., ¢,) e T"andy = (Y4, ..., V) € I'". Following the
second way, we put forward the double inequality
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n
[0m =Yl < p(£,y) < Z|€k_yk| ,
k=1

which holds for each m= 1,n (the second inequality isthe triangle’srule!).

If we consider the vector y = f (X) of components y, = fi(X), where x is
arbitrary in a neighborhood Ve 7(x), then we may express the existence of
thelimit 7 by the condition:

Ve>0 IV et(Xg) VxeV = p(l,f(X)<e.
Similarly, the existence of thelimit 7 for each k = 1,n means that
Ve >0 3V er(Xg) suchthat VXeV = |/ — Wl < &
The first inequality from above shows that
p(l,y)<e = [lk—Wl<e,

hence the existence of ¢ assuresthe existenceof ¢, foreachk=1,n.

Conversely, let the limits 7 exist for all k=1,n, and let ¢ > 0 be given.
If we introduce ¢y = £/ nin the conditions concerning each /7 , we obtain a
set of neighborhoods Vy , so we may construct V =~{V, : k =1n}e 7(Xg) -

It iseasy to seethat xeV leadsto p(/,Y) <& hence ¢ exists.
b) In addition to @) we take ¢ = f (Xp), which is equivaent to ¢, = fi(xo) for

alk=1n. &>

3.16 Corollary. If D isadomain inthe complex plane C, and the function
f: D—C hasthecomponentsP = Re f and Q = Im f, then thelimitsof f, P
and Q atany zy= X + iyp € D areintherelations:
a =¢+in= limf(2iff
Z-2,
&= lim P(x,y) and n= lim Q(X, y)
(X, ¥) = (%o, Yo) (X, ¥)—>(X,Yo)
at the corresponding point (Xo, Yo) € R%

b) f iscontinuous at z, iff both P and Q are continuous at (Xo, Yo).
Proof. We may identify C to R? from topological point of view, and reduce

thelimit of f to those of its components. >

3.17. Theorem. A vector sequence (Yp) = ((Yp), ---» (Vo). PeN, in T, is
bounded (convergent, or fundamental) iff al its component sequences (ypk),
k=1n, are so.

Proof. Asin the proof of theorem 3.15, we may use the inequalities

n
X" = ypl< p(x, ¥p) < Z\Xk - y';\,
k=1

which hold for any x = (¢, ..., X, peN, and m= 1,n. The analysis of the
boundedness involves a fixed x. To establish the property of convergence,
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we take X = lim y, . Similarly, to study the Cauchy’s property, we may

pP—
replace X by yy . >
3.18. Coroallary. A sequence of complex numbers is bounded (convergent,
fundamental) iff both sequences of real and imaginary parts are bounded

(convergent, respectively fundamental).
Proof. We consider C = R? in the above theorem. %

3.19. Coroallary. The Euclidean spaces I'" are complete for any neN'.
Proof. According to the theorem in I11.2, R is complete, i.e. we have

convergent = fundamental
for any sequence of real numbers. Consequently, this identity of properties
holdsin C = R? aswell asin any Cartesian product I"". >

The above properties concerning the sequences in I can be easily
extended to nets (i.e. generaized sequences). The detailed analysis of this
possibility isleft to the reader.

3.20. Remark. In practice we frequently face the problem of comparing the
convergence of the series (a) > X, , (b) > [x,/, and (c) Z||xn||2 inascalar
product space, particularly when the system {x, : ne N} isorthogonal. Asa
genera rule, the convergence of the series (b) implies that of (a) and (c).

_1\n
The rea series Z( Y shows that none of the converse implications is

n
&'
Jn
that the series of types (a) and (c) do converge independently. However, the
equivalence (a) < (c) holds for series of orthogonal elements. In fact, using
the continuity of the scalar product, if x =an, then the following

extended Pythagoras' formula holds
X =<T %y, 0= Y 0= Y[

Consequently, if Z||xn||2 is convergent, and s, s, are some partial sums of
the series )_ x, , then (assuming p < q), we have

2
q
Isg=so IF = 2%l -
n=p+1

Even so, the convergence of (b) is not generally implied by the others, asin

generdly true. Using the series of termsy, = 1/n, and z, =

, We see

thecase of x,= (15},) , Where 5#, isthe Kronecker delta
n ieN
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PROBLEMSS8III.3.

1. Formulate the main topological notions (e.g. adherence, interior, limit,
convergence, continuity, etc.) in terms of metrics.

Hint. For example, ¢ = lim f(x) takesthe form
X=X

Ve >0 36 >0 suchthat p(X, X)) <6 = o(f(X), /) <e.

2. Let (X, be a sequence in a metric space, such that (X;n) and (Xon.1) are
convergent subsequences. Show that the sequences (x,) and (Xs,) are
simultaneously convergent.
Hint. Any subsequence of a convergent sequence is convergent to the same
limit. Conversely, the convergence of (xs,) implies

[im Xon = 1M Xone 1 = lIM X,

3. Show that the function f:[1,00)— [1,0), expressed by f(x) = x + 1 hes
X

no fixed point, even if |f (X) —f(y)| < [x—y| at any x=Y.
Hint. x = f (x) isimpossible because 1/x # 0. Because of the relation

FO)—fF ()= (L— YKyl
Xy

the claimed inequality is obvious, but f is not contraction.

4. Let &/ denote the set R or any interval (—oo, @], [a, b], [b, +«) of R, and
let f: &> </be a derivable function on < Show that f is a contraction if
there exists ¢ < 1 such that |f /(x)|<c at any xe </ In particular, anayze the
possibility of approximating a solution of the equation
X=asSnXx+ Bcosx+ y

making discussion upon «, B, ¥ €R.

Hint. Use the Lagrange’s theorem about finite increments, which assures
the existence of & e(x, y) such that f(x) — f(y) = f ‘(§)(x — y) holds
whenever x, y € o/ with x <y. Write the particular equation using the

function f (X) = Ja?+B%sn (x + ¢) + y, where f is a contraction if
Ja? + ﬁz < 1; otherwise the method of successive approximation doesn’t
work, even if the equation always has at |east one solution.

5.Let (& p), (&, o) and (X, £) be metric spaces. Show that if the functions
f: 2> % and g: &— X are uniformly continuous, then gof is uniformly
continuous too. Isthe converse implication true?
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Hint. The property is directly based on definitions. The converse assertion
isgenerally false, asfor 2= &= =R, g=|-| and

£l = X ifxeQ
)= ~ X ifxeR\Q

6. Letusfix aset A < R (or A < C). Show that if any continuous function
f: A—> R isbounded, then A is compact.

Hint. Taking f () = x, it follows that A is bounded. For any & € A \ A, the
function f«(x) = [x — | ~ ' is continuous but unbounded, hence we
necessarily have A= A, i.e. Aisclosed.

7. Let (2, p) and (&, o) be metric spaces. We say that f: 2> &is a
Lipschitzean function iff there exists L > O, called Lipschitz constant, such
that the inequality
o(f(x), f(y)< L p(xy)
holds for arbitrary x, ye & Show that, in the case (2, p) = (&, o), the
following implications hold:
fisacontraction = fisLipschitzean =

= f is uniformly continuous = f is continuous,

but none of their converses is generaly true. More particularly, if &is an

interval of R, place the property “f has (bounded) derivative on &

between the above properties.

Hint. Use functions like a¢ or x sin1 on intervals of R. Any function with
X

bounded derivative is Lipschitzean. The function +/x is a counter-example
for the converse implication.

8. Let X #J be an arbitrary set. Find a metric on X such that al the redl
functionsf: X - R (where R is Euclidean) are continuous on X.

Hint. The continuity of the characteristic functions attached to the point-
wise sets{x} shows that the only possible topology on X is discrete.
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§111.4. CONTINUOUSLINEAR OPERATORS

The linear functions play an important role in Analysis because of their
simple form and convenient properties. For example, they are used in local
approximations of a function, in integral calculus, in dynamical systems
theory, etc. When the functions act between linear spaces and they are
linear, we use to call them operators. In particular, the term functional is
preferred whenever the target spaceisT, i.e. it takes scalar values.

In this section we mainly study the continuous linear functionals and
operators acting between normed linear spaces, when continuity and other
topological properties can be considered relative to the intrinsic topologies
of the involved spaces. For example, the operator U:(&Z7 || . |l.) > (|l - I|.2)
IS continuous at the point X € & iff for each & > 0 there exists 6 > 0 such
that ||U(X) — U(Xg)|| < & holds whenever || x — X || < 8. Genarally speaking, if
there is no danger of confusing the norms on & and &7, we may renounce
the distinctive notation |-| 4, |-| 5, and mark all of then by || . |l.

According to the following property we may simply speak of continuous
linear operators without mentioning the particular point X, any more.

4.1. Proposition. Every linear operator U: (& || . |) — (& || - |) is
continuous on & (i.e. at each point of &) if and only if it is continuous at
theorigin Oe &~

Proof. The essentia part isthe “if” implication, so let U be continuous at 0,
and let X, € Z’and € > 0 be arbitrary. Using the continuity of U at 0, we
find 6 > 0 such that |ly|| < & implies ||U(y)|| < &. If we notey = X — Xo, then
U(X) — U(X) = U(y) follows from the linearity of U. Consequently, the
condition |[x — Xo|| < & implies |JU(X) — U(Xy)|| < &. &

4.2. Corallary. The continuity of the linear operator is uniform.
Proof. In the proof of the above proposition, & depends only on g, i.e. it is
the samefor al x, € &. &>

4.3. Definition. Let (&7 ]| . |]) and (&, || - |[) be normed linear spaces, and let
U: 2> & be alinear operator. We say that U is bounded on & iff there
exists areal number u > 0 such that the inequality

IUCAI < plix]
holds at any xe &~ The set of al bounded operators between &”and &7/'is
noted by AB(Z; &). In particular, the set 23(Z; T') of bounded functionals
on Z is called topological dual of 2, and noted 2" .

The following theorem explains why for linear operators we may identify
the notions of boundedness and continuity.
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4.4. Theorem. If U: (|| . ) = (& || . |) is alinear operator, then it is
continuous if and only if it is bounded.

Proof. We easily see that a bounded operator is continuous at the origin O.
Consequently, according to proposition 4.1, it is continuous on &

Conversely, if U iscontinuous at the origin 0Oe &, then for arbitrary € > 0,

hence aso for € = 1, there exists 6 > 0 such that ||x|| < & implies |[U(X)|| < 1.
Except O, where the condition of boundedness obviously holds, for any

other xe 2 we have ||(%HXH)X|| < §, hence ||U((%HXH)X)|| < 1. Since U is
linear, the inequality |JU(X)|| <(%)||x|| holds at al xe @ . This shows that
the condition of boundednessis verified with p = % : >

4.5. Theorem. The functional ||||* B, /) >R, defined by

U] =inf {ueRe: U < lIXl for all xe 3,
iIsanorm. In addition, this norm also allows the following expressions:
[Vl = sup {IVII: IXlI<1} =

U
=sup {lUII[: IIx]l = 1} = sup {%1# 0} :

Proof. Obviously, B (%4, &) isalinear sub-space of (Z(Z, &), +,.). To
establish that ||||* is anorm, we have to prove the conditions [N4], [N] and
[N3] from the definition 1.4.15. For example [N4], i.e. |U ||*= 0<=U=0,is

directly based on the definition of |-[ .
To prove[N,] it is enough to remark that for any A # 0 we have

ICAU)GIN< e [Ixl <= UM x) Sﬁll |2 I,

because it leads to the following expression of |AU || ;

AU ||*: inf { u>0:[[(A)X)]| < p|X| for all xe 2} =
= ]\ inf {ﬂ > 0:U (y)| < =y] for all ye fgr}.
2 2
The case L =0 in [Ny] istrivial.

Finally, for [Ns], let A and p be positive numbers showing that U and V
are bounded operators. Because ||U(X)|| < u|x|| and [[V(X)[| < A|[X]| imply

IV + V)G < (A + Kl

it followsthat |U +V| < A + . It remainsto take hereinf .

To conclude, ||||* isanorm.
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*, let us note v = sup {” ( )” X;tO}

X

other words, for arbitrary £ > 0, and x= 0, we have ||[U(X)|| < (v + &)||X]|, i.e.
the number v + ¢ verifies the condition of boundedness. Consequently,

u ||* < v+ ¢ holds with arbitrary € > 0, hence also |U ||* <.
Y ()]
X

v < p holds too. First, because [U|" is the infimum of such s, it follows

Conversaly, if pisanumber for which < u, then we can show that

that v < |U ||* . Thus we may conclude that |U ||*= sup {” (. X # 0}

X
1 g VO -
Because || — X)||, we obtain
[ i

sup (UG : Il = 13 = sup {” ”i”)” x;«:O}

Finaly, from{xe & |[X|| = 1} < {xe & ||X||<1}, we deduce that
sup {{[U(X)]] : IIXII= 1} < sup {JIUG = Il <1},
while from |JU(X)|| < |U(|| ”

obtain the converse inequality. &

x|I=1, = (=

X)||, which is valid whenever 0 < ||x||<1, we

77

4.6. Corollary. Forevery U € B(Z, &) and xe 2 we have

Ul < |U || [IXI
Proof. According to the formula |U ||*= sup {” ”f(”)” x;tO} it follows that
PO 10 holdsat any xe 7\ {0}. &

X

4.7. Corallary. If U:Z"— & isalinear operator in the scalar product space
(Z,<.,.>),thenUe B (Z, Z) if and only if the inequality

| <U), y> [ < wiX]HIyll
holdsfor somepn >0, atal X,y e &
Proof. According to theorem 4.4, if U is continuous, then it is bounded,
hence there exists pu > 0 such that |[U(X)|| < u [[X|| holds at each xe &". Using
the fundamental inequality of a scalar product space, we obtain

| <UR), y> | < UGN IIIE < w11 Iy
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Conversdly, let us suppose that the inequality | <U(X), y> | < w [X]| IIVIl
holds at each X,y e 2. In partlcular for y = U(x), we obtain:
VO < w IX UG
Considering the essential case U(X) # O, this inequality shows that U is a
bounded operator. &

4.8. Remark. In many practical problems (e.g. finding the differentia of a
given function) it is important to know the form of the linear functionals on
a particular linear space. So far we can say that each linear functional on I
has the form f (x) = ¢ x for some ce I'. More generally, the general form of
the linear functionalsonT'" is
fX)=a g+ aX+ ...+ ax,=<a x>,

wherea= (a;, ay, ... , a,) €I'" depends on f. It is a remarkable fact that a
similar formis kept up in al Hilbert spaces:

4.9. Theorem. (F. Riesz) For every linear and continuous functional fin a
Hilbert space (%7, <., . >) there exists avector ye & such that:

a f(X)=<xy>aanyxe &, and

b) [[T11=1ivll -

In addition, this vector is uniquely determined by f .

Proof. If f = 0, the assertion is proved by y = 0, hence we shall essentially

analyzethe casef #0. Let L = f < (0) be the null subspace of f . Sincef is
continuous, L is aclosed linear subspace. Because L= & holdsin this case,
we can decompose the space asadirect sum Z'=L & LL, where L™ #{0}.
If wefix somez e L™\ {0}, thenf(2) =0, and to each xe 2 we can attach

theelement u= x— % z. Because f (u) = 0, we deduce that ue L, hence
z
<u,z>=0,andfinaly<x,z> — fE ;< z,z> = 0. So we can evaluate
z
F(x) = f(z)<x,z>=<X,E 7>
I4?

hence the asked elementisy = f(2) ||| %z

In order to evaluate || f ||, we may start with the fundamental inequality

[T = 1<y > < X[ Iyll,
which showsthat || f ||<] y]I-
On the other hand, if x = y #0, the fundamental inequality becomes
equality, i.e. | ”§/|)|/)| = || y|l- Because || f || = sup {| ||(y|)|/)| y;to} it follows

that || f ||>]| yll. The two contrary inequalities show that || f || = || vI|-
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Let us suppose that y is not unique, and let y' € 2 be another element for
which the representation f (x) = < x, y'> holds at any xe Z. If compared to
theinitial form f(X) = < x, y >, it showsthat < x, y—y’> = 0 holds at each
xe Z . In particular, taking x = y—y’, we obtain || y—y’ || = 0, which shows
that y = y’. Because this contradicts the supposition y = y ', we may
conclude that y is the single element in & for which a) holds. &

4.10. Remark. The above theorem shows that all the Hilbert spaces can be
identified with their duas, i.e. 2= 2 . This result has many important
conseguences in the theory of the adjoint and self-adjoint operators, in
spectral theory, etc., aswell asin practice (e.g. in Quantum Physics).

Because we mainly use linear functionalsin order to develop the classica
Differential Calculus, we continue their study from some other point of
view, namely we will extend the above results to multi-linear continuous
functionals. In this framework the starting space has the form

X =XDLX...xZy,

where (Zx, || - k), ke{1, 2, ... , n}, are normed linear spaces over the same
field I'. It iseasy to see that (&, || . ||) is a normed linear space too, if the
norm || . || & —>R.isexpressed at any X = (Xq, X, ..., Xy) € & by

X[l = max {[Xdl: k=1,n}.
4.11. Definition. Let (&7, || . |) and (&7, || - ||) be normed linear spaces,
where &= 21 x 43X ... X 4, isorganized as in the previous remark. The
function U: Z°— &7is called multi-linear (more exactly n-linear) operator
(functional in the case &/=T) iff it islinear relative to each of its variables
e v, i.eforal k=1n.

The 2 - linear functions are frequently called bilinear. Of course, it makes
sense to speak of “multi- ...“ iff n > 1, but the results known for n = 1
should be recovered from this more general framework.

We say that the n-linear operator U is bounded iff there exists u > 0 such
that the following inequality holds at any X = (X, Xo, ..., Xn):

UON< pliXally [l - - (%l -

n
For the sake of shortness, we write [[U(X)|| < p n(x), where n(x) = [ ][], -
k=1
The continuity of a multi-linear function refers to the natural (uniform)
topologies of (&, | . [[) and (7, || . ]))-
4.12. Examples. If we take &1 = 23 = /= R, then the function f (x, y) = xy

is bilinear, but not linear. In the same framework, g(X, y) = x+ yislinear
but not bilinear, hence the notions linear and n-linear are independent. In
particular, 1-linear coincides with linear, but the term n-linear essentialy
refersto n > 1. Both f and g from above are continuous functions, while the
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function h: Cp(K) x Cpi(K) >R, of values h(x, y) = X(to) Y(to), wherety is
fixed in the interior of the compact interva Kc R, is not continuous
relative to the norms ||x(lx = sup {X(t)|: te K}, ke{1, 2} (see aso problem
3 at the end of the section).
The above theorem 4.4 can be extended to n-linear operators.

4.13. Theorem. In the terms of the above definition, the n-linear operator
U is continuouson & if and only if it is bounded.

Proof. If U is continuous on &; then it is continuous at the origin of &too.
Let & > O be the number that corresponds to € = 1 in this condition of
continuity, i.e. ||| < & implies [JU(X)|| < 1. Let x be a vector of components

X # O € Ziforal k=1n, and let us note X* = (X*, X*, ..., X*), where

X* = _9 x foral k=1n. Itiseasy to seethat || x*|| <, hence
24
lU(*)|| < 1. Because U is n-linear, this inequality takes the form
s" 1
: UK, - Xl < 1,
2" ()™ [y e Xnly

n n
or, equivaently, |[UX)| < {27\/1 n(X). In this case, pu = {27\/1 is the

constant in the condition of boundedness for U .

Otherwise, if x, = O, for some k = 1,n, then U(x) = 0, hence the condition
of boundedness reduces to a trivial equality. So we conclude that U is a
bounded operator.

Conversely, let the n-linear operator U be bounded. In order to prove its
continuity at an arbitrary point X, = (X, , X2, ..., Xa") € % we may evaluate

IU() = U(xo)ll =

n
0 0 0o 0 0
Z[U (Xg yeees X0 X s X 10ees Xy ) — U (K ,...,xk_l,xk,xk+1,...,xn)]
k=1

<

n
o 0 0
< ZHU (XL yenes Xi—1s X — Xk’Xk+1""’X”)H =
=1

n

Now let us remark that |[x —Xo|| < 1 implies
Xl < 11 =% N+ XN < 1+ 1%

n
If wenote v(xg) =] (1+ %), then we may write
k=1
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n
UG = Ul < mvOo)( D [IXe= T < pv(xo) ¢ — Xl
k=1
To conclude, for each € > 0 there exists 6 = min {1, ;}, such that
n-u-v(Xo)
X —Xo|| < & implies |JU(X) — U(Xo)|| <&, i.e. U iscontinuous at X, . >

4.14. Remark. It is easy to see that the set < (%, &), of al ndinear
operatorson &= 21 x s x ... X &, isalinear space too. More than this,
the set B(Z;, &), consisting of al continuous n-linear operators (which
are also bounded, according to the above theorem), forms a linear space
over I', and for each Ue 9B(Z;, &) it makes sense to consider

W[ = sup {IIUEYI: X< 13

Following the same steps as in theorem 4.5 from above, we obtain a
similar result relative to continuous n-linear operators, namely:

4.15. Theorem. The functional |- ||* : BZ, &)—> R, isanorm.
Finally, we analyze some problems of isomorphism between spaces of

operators, which will be necessary to study the higher order differentials.
4.16. Definition. Let (% ||-|) and (&, |-|) be normed linear on the same

field I'. These spaces are said to be metrically isomorphic iff there exists a
function @ : 2— &, called metric isomorphism, such that:
[1:] @isal:1 correspondence between Zand &,
[I;] @islinear,i.e. @(aXx+Py)=a @ (X)+p @ (X) holdsat eachx,y € &
anda, fe I

[13] @ preservesthenorm, i.e. wehave| @ (X) || = ||x|| a each xe &~

If only conditions [I,] and [l,] hold, we say that these spaces are linearly
iIsomorphic, and @ iscalled linear isomorphism.
4.17. Examples. The finite dimensiona linear spaces over the same I' are
linearly isomorphic iff they have the same dimension. Even so, they are not
metrically isomorphic, as for example the Euclidean I'", and the space of all
polynomial functions of degree strictly smaller than n, defined on some
compact set, and endowed with the sup-norm.

The above theorem 4.9 (due to Riesz) shows that each Hilbert space is
metrically isomorphic with its topological dual.

The following theorem establishes an isomorphic representation of the
operators whose target space consists of operators.
4.18. Theorem. Let (43, ||.|l), (% |||l2) and (& ||.|]) be normed spaces, and
let the space &= 21 x 5 be endowed with the above product norm ||.||. If

the spaces (%A% &), ||| and (B(24, B(Z, &), || ) are normed
according to theorem 4.5 and 4.15, then they are metrically isomorphic.
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Proof. We start with the construction of the isomorphism. More exactly, to
each Ue B, &), we have to attach a bounded linear operator defined at
each xe &j. Primarily we consider an operator U, : 45— &, of values
Uy (t) = U(x, t) at any te &5. Because U is a continuous bilinear operator, it
follows that Uy is continuous and linear, hence Uye 98(%3, &).

Now we may construct U: 21— B (%5, &), by the formula U(x) = U, .
Obvioudly, at each x,y € &1, te &3 ,and a, pe I', we have:

U(ax + BY)(t) = Uaxpy(t) = U(ax + Py, )= aU(x, t) + BU(y, 1) =
= aUy(t) + BU(1) = (aUy + BU)(1) = (aU(x) + BUW))(D) .

Consequently, U(ax + By) = aU(X) + BU(Y), i.e. U islinear.

In order for us to show that U is continuous, we may note the norm of

B(Z3,4) by ||, and we evaluate

W, = Ul = sup Ul : Itk <13 = sup{ lU(x, DI : [t <1} <

< osup{p Xl [tz < Il <13 < p il
ont of U

Consequently, U € B(Z1, B(%s, &)) .

On the other hand, we may interpret this construction as a description of

the function @ : B, &) —»> B(21, B(Z2, &), of values
@ U)=U.

Therest of the proof isastudy of @.

@ isinjective. In fact, if @ (U) = @ (V), then U(x) = V(X) must hold at
each xe Z37. From U, = V, it follows that U,(t) = V,(t) at each te Z..
Consequently, we have U(x, t) = V(x, t) at any xe &7 andte &3,i.e.U=V.

@ issurjective. If e B(A, B(Zs, &)), then a each xe 27 we have
U(X) e B(Z,, &)), hence the operator U: 27 x &5 — & iswell defined by
considering U(x, t) = (U(X))(t). It is easy to see that U is a continuous
operator, and @ (U) =4.

@ islinear. If U,V € BAZ, &), and a, p € T, then

a®@U)+po(V)=alU+pV,
and at every xe &1 we have
(aU+BV)(Xx)=aUX) +BV(X)=aUc+p Vi
Furthermore, at eacht € &, , we have
(0 Uy + B V(1) = o Uk(t) + B Vi(t) =
= U, ) + BV ) = (@U+BV)(x ) = (aU+ B VD),
which showsthat a Uy +  Vy = (o U + B V).
In other terms, the equality
aU)+pV(x)=(alU+BV)X)
holds at any xe &7, i.e. @ fulfilsthe condition

(@@ U)+p @ (V))(X) =D (aU+pV)X).
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Because x is arbitrary, we obtain

a@U)+B@(V)=@(@U+pV).

@ preservesthenorm. Infact, for each Ue 9B,(Z, &), we have:
[0 )= U] =sup {JUEI : IMl <1} =sup {|U] : IKl<1} =

=sup {[ sup { IOl llth <1}] : X< 1} =
=sup {JU DI: Ixli<1, and [l < 1} =

=sup {IU0x DI i Ol < 23 = |
To conclude, |@ V)| = U . &

4.19. Remark. For practical purposes it is useful to know more particular
bilinear functions. For example, in real Hilbert spaces, we may generate
bilinear functions by linear operators, according to the formula

f(x,y) = < x, Uy>.

In particular, each square matrix A with real e ements generates a bilinear
function on R", according to asimilar formula, f (x, y) = < x, Ay>.

These examples make use of the fact that the scalar product itself is a
bilinear function on real spaces. For the case of a complex space, there is
another theory that takes into consideration the so called skew symmetry of
the scalar product, and involves Hermitian operators and matrices, self-
adjoint operators, general inner products, etc. Some elements of this sort
will be discussed later.

The following proposition shows that the bilinear functions in the above
examples have the most general form (in that frame).

4.20. Proposition. If (&, <., . >) is area Hilbert space, then to each
continuous bilinear function f: 2’x 2 — R there corresponds a continuous
linear operator U : &"— & such that the equality
f(xy)=<x Uy>
holdsat each x,y € &
Proof. Whenever we take ye & it follows that the functionf(.,y) : Z—R
Is continuous and linear. Then, according to the Riesz’ theorem, there
exists y* e Z’such that f (X, y) = < X, y* > at any xe &7 Let us define U by
U(y) = y*. This operator is linear because for al U(y) = y*, U(2) = Z*, and
a, Be R, we deduce that the following equalities are valid a each xe &
<X, U(ay + B2) > =1(x, ay + p2) = af (x, y) + Pf(x, 2) =
—a<xUly)>+B<x U(2>=<Xx ay* + fz* >.

According to the above theorem 4.13, f is bounded, hence there exists a
real positive number p, such that |f (x, y)| < w |[X|| [ly]| holds at any X, y € &.
In particular, at x = U(y), thisinequality becomes

UK < w VW)V
which proves the boundedness of U. &
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4.21. Corollary. For each bilinear function f: R" x R" — R there exists a
matrix Ae M (R) which representsf in the sensethat f(x,y) = < x, Ay >

holds at any x, ye R". More exactly, if we note the transposed matrix by the
superscript |, so that (Xg, %o, ..., Xo) = X', and (Y1, Y2, ..., Vo) = Y' represent
thevectorsx andy in somebase B ={e,, &,..., &} of R", then

n
fooy) =X AY= 3 ajxy,
i,j=1
where A consists of the elementsa;; = f(e, g ), foral i,j= 1n.
Proof. We represent the above operator U in the base 8, aswell as x, y and
< X, Uy >. The continuity of f isimplicitly assured since R" has the finite
dimension ne N* (see also problem 1). &

An important type of functions (also called formsin R") derives from the

n-linear functions by identifying the variables. This technique will be later
used to connect the higher order differentials with the terms of a Taylor’'s
development (see the next chapter).
4.22. Definition. Let & be areal linear space. If f: @x Z—> R isabilinear
function, then the function ¢ : 2> R, expressed by ¢ (x) = f (X, X) at any
xe &, is caled quadric function. Smilarly, if g is a three-linear function,
then the function of values v (X) = g (X, X, X) iscalled cubic, etc.

A bilinear function f is said to be symmetric iff f(x, y) = f(y, X) holds at
arbitrary X, ye &,

If 2=R", thenf, g, etc. (respectively ¢, v, etc.) are caled forms.

4.23. Remark. Sometimes, we prefer to define the quadratic functions by
starting with symmetric bilinear functions. The advantage of this variant is
that the forthcoming correspondence of f to ¢ is 1:1 (otherwise f =g may
yield the same quadratic function ¢, e.g. X;y» and xzy; in R?). Going back,
from the quadratic form ¢ to the generating bilinear symmetric function f
(frequently called the polar of ¢ ), is done by the formula
fxy)=leXx+y)—oX)-pW]/2

The quadratic forms, i.e. the functions ¢ : R"— R, are always continuous.
Their ssmplest description is that of homogeneous polynomial functions of
the second degree, which has strong connections with the geometric theory
of the conics and quadrics.

4.24. Example. The function ¢ : R?>—> R, expressed at each X = (xq, %) by
@ (X) = X° + 4 % — 3%°
is generated by the (unigque) symmetric bilinear form
fX,y) = Xay1+ 2(X1 Y2 + X2 Y1) —3X2 Y2,
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which represents the polar form of ¢ . From the geometrical point of view,
¢ (X) = k isthe equation of a centered quadratic curve (conic) of matrix

(3 3}

In addition, doing a convenient rotation, i.e. replacing

Xo = x{sinoc + xé COSc

we find another system of coordinates, in which the equation of this conic
becomes canonical, namely A, X1 2 + 4, x' , 2 = k'. The corresponding
canonical form of ¢ inthe new base has the smpler diagonal matrix

M 0
B= .
0 A

The question is whether such a reduction to a form that contains only
squares (represented by a diagonal matrix) is aways possible and if “yes’,
then how is it concretely realizable? In order for us to get the answer,
which will be positive, we need several results about the complex spaces
(as mentioned in the above remark 4.19).

4.25. Definition. Let &’be a (real or complex) linear space. We say that a
functionf: 2’x &> T isHermitian iff it fulfils the conditions:
[H] f(ax+ By, 2= af(X,2 + pf(y,2 adlx,y,ze &, anda, B T

(called linearity relative to thefirst variable);
[Ho] T(x, y) = f(y,Xx) atal x, ye &(called skew symmetry).
4.26. Remarks. a) If I' = R, then the condition [H,] reduces to the usua
symmetry, hence the real Hermitian functions are symmetric (speaking of
symmetric complex functionsis also possible, but not very fruitful).
b) A property similar to proposition 4.20 holds, i.e. every Hermitian
continuous function f on Hilbert space (4, <., . >) hastheform

f(xy) = <x Uy>,

where U : 27— & isacontinuous linear operator.
c) By analogy to Corollary 4.21, the Hermitian functions on I'" (where they
all are continuous) are represented by matrices. More exactly, if the matrix

A e M (') represents the operator U in a particular base B of 27 =1,

{xl = x{ coSo — xésina

and the matrices X, Y € M1 (I') represent the vectors X, ye &, then
J— n —_—
f(X, y) = XTAY = Zaijxi yJ ,
i,j=1
wherea;; =f(e, ), withe, g € B, fordli,j=1n.
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d) Each matrix A, which represents a Hermitian function f as before, is said
to be Hermitian. Its specific property, i.e. A= A, isareformulation of the
relationsa;; = a;; , forali,j=1n.

Operators, which are represented by Hermitian matrices, alow a general
theory based on the notion of adjoint operator, as follows:
4.27. Theorem. Let (2, <., .>) be aHilbert space over thefieldI". If U is
a continuous linear operator on &, then there exists another (unique) linear
and continuous operator U* on &7, such that < Ux, y > = < x, U* y > holds
aadlx,ye .
Proof. Obvioudly, if U : & — & is a continuous linear operator, then the
functional f: 2 x & — T, defined by the formula f (X, y) = < Ux, y >, Is
continuous and Hermitian. If we fix ye &, then the function f (. , y) is
continuous and linear. Consequently, in accordance to the Riesz’ theorem,
to each vector y there corresponds a (unique) vector y* € &, such that

foy)=<xy >
holds at all xe &. It remains to note y* = Uy, and to repeat the reason in
the proof of proposition 4.20. &

4.28. Definition. The operator U*, introduced by theorem 4.27 from above,
is caled adjoint of U. If U* = U, i.e. the equality < Ux, y > =< x, Uy >
holds at all x, ye &, then U is called self-adjoint operator.

The self-adjoint operators have remarkabl e spectral properties:
4.29. Proposition. Let (2, <., .>) beaHilbert space. If U : 2> Zisa
self-adjoint operator, then:
a) All its proper values are rea (but not necessarily simple);
b) The proper vectors, which correspond to different proper values, are

orthogonal each other;

c) If Z=T", then there exists a base consisting of proper vectors;

d) A matrix Ae M (') represents U iff it isHermitian, i.e A= AT.

Proof. @) Replacing Ux = Ax in the very definition < Ux, y > = < x, Uy >, we
obtain A=1,i.e.1eR.

b) If Ux =A%, and Uy = py, where A, peR, A=, then the fact that U is
self-adjoint leads to (A — ) <X, y > = 0. Consequently, we have x L y.

c) If x, isaproper vector of U, then xf Is an invariant subspace of U, and
the restriction U; of U to this subspace is a self-adjoint operator too. Let x,

be a proper vector of U;, and let U, be the restriction of U to {xg, X2} .
Here we find another proper vector, say Xs , etc. Because the dimension of
2= I'"isfinite, namely n, this process stops at the proper vector X, .

d) If Arepresents U, therelation < Ux, y > = < x, Uy > becomes

176



§ I1.4. Continuous linear operators

XTATY = XTAY.
This means that the equalities a;; = a;; hold for all i, j = 1n. &

Now we can discuss the fundamental theorem concerning the canonica
form of aquadratic function on R" .

4.30. Theorem. For each quadratic from there exists an orthogonal base of
R", in which it reduces to a sum of + squares.

Proof. Let the quadratic form ¢ be generated by the symmetric bilinear
formf . The operator U, for which we have f (x, y) = < x, Uy >, obvioudly is
self-adjoint. According to the above property 4.29. c), it has an orthogonal
system of proper vectors. Because a;; =f(e, §) = <&, Ug >, it follows
that & ; = O whenever i = j. Consequently, the system of proper vectors

forms the sought base. &

4.31. Remark. The matrix A, which represents a quadratic form ¢ in its
canonica form, has a diagonal shape. If this matrix contains some zerosin
the diagona (hence det A = 0), we say that the form ¢ is degenerate. The
other elements of the diagonal are either +1 or —1 (in the complex case the
sign doesn’'t matter). Relative to the number p of positive, g of negative,
and r of null coefficients of the squares in different canonical forms, the
following theorem is very important:

4.32. Theorem. (Sylvester's inertia law) The numbers p, g, and r, of

positive, negative, respectively null coefficients, are the same for al the

canonical forms of agiven (real) quadratic form.

The proof is purely algebraic, and therefore it is omitted here (see some
algebra treatises). According to this “law of inertia”, the triplet (p, g, r)
represents an intrinsic property of each quadratic form, in the sense that it
is the same in all the bases mentioned in theorem 4.30. This triplet is
frequently called signature. Its usefulness is primarily seen in the process
of classifying the quadratic forms, which, obviously, should be based on
some intrinsic properties of these forms.

4.33. Classification. Let ¢ : 2~ R be aquadratic function on the real linear

space &°. We distinguish the following situations:

- Thereexist x,y € Z’such that ¢ (x) >0 and ¢ (y) <0, when we say that
@ isindefinite; in the contrary case we say that ¢ is semi-definite.

- The semi-definite quadratic function ¢ vanishes only at the origin, i.e.
X#0= @ (X)#0. Inthis case we say that ¢ isdefinite.

- The semi-definite (possibly definite) quadratic function ¢ takes only
positive values, i.e. ¢ (X)>0 holds at al xe 27, when we say that ¢ is
positive. In the remaining case, when ¢ (X)<0 holds at all xe &Z°, we say
that ¢ isnegative.
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We may easily reformulate this classification in terms of signature:
4.34. Proposition. If ¢ :R"—>R is a quadratic form of signature (p, g, r),
then the following characterizations are valid:
a) ¢ isindefiniteiff p=0 #q;
b) ¢ ispositively (negatively) semi-definite iff g=0 (p=0);
C) ¢ ispositively (negatively) definite iff g=r=0 (p=r=0).
4.35. Remark. Establishing the type of a quadratic form is useful in the
study of the local extrema. Therefore according to the above proposition,
our interest is to know more methods for finding the signature. The first
one is directly based on the canonical form, which can be obtained by
following the proof of the proposition 4.29.c. More exactly:
4.36. Theorem. A (real) quadratic form is positively (negatively) definite
iff the proper values of the associated matrix are all positive (respectively
negative). If this matrix has both positive and negative proper values, then
the quadratic form is indefinite.

Now we mention without proof another test of definiteness, which isvery
useful in practice because its hypothesis asks to eval uate determinants:

4.37. Theorem. (Sylvester) Let ¢ be aquadratic form, and let
Ar=ay1;, Ao =180 — a122, ., Ay =det A

be the principal minors of the associated matrix A. We have:

a A1>0,A,>0,...,A,>0iff ¢ ispositively definite;

b) A1<0,A,>0,A3<0,...,(-1)"A,> 0iff ¢ isnegatively definite.

We conclude this section with a significant property of the definite forms,
which will be used to obtain sufficient conditions for the existence of a
local extremum,

4.38. Theorem. If ¢ :R" >R is a positively definite quadratic form, then
there exists k > 0 such that the inequality
¢ (9 > kX
holds at all xeRR".
Proof. Let S={xeR": |X|| = 1} be the unit sphere in R". Because Sis

bounded and closed, hence compact, and the function ¢ is continuous, there
existsk = inf {@ (X) : xeS} = ¢ (X) >0, where X, S. More precisely, we
have X, # 0, so that k > 0. Now, at each xe R"\ {0}, we evaluate:

209 1Y _ Ly L=p =02k,

(P I ] X

where f is the symmetric bilinear form that generates ¢ . This leads to the
clamed relation at al x=0. It remains to remark that it is obviously
verified at the origin. &
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PROBLEMS 8ll1.4.

1. Show that every linear operator, which acts between spaces of finite
dimension, is continuous. In particular, consider the derivation on the space
of all polynomial functions defined on [a, b] < R, which have the degree
smaller than or equal to afixed neN.

Hint. Each linear operator is represented by amatrix A= (ay), i.e.

n J—
Yi= Z ik X%=<g, X >
- k=1
holds for all i = 1,m. Using the fundamental inequality in I , we deduce
that | yi| <lfall [III, hence Iyl <w [IXI|, where

m n 2
w= > e
i=1k=1

For polynomial functions, if we refer to thebase {1, t, t% ..., t"}, then we
may describe the derivation as a change of coefficients, namely
(Co, C1y +.., Cy) > (Cy, 2G5, ..., NCy).
In other terms, we represent the operator of derivation by the matrix

010...0
002..0
A=|.........
000..n
000..0

2. Show that the operator of integration on a compact K =[a, b] <R, with
acontinuous nucleus A : K x K - R, defined by the formula

b
y(s) = [ A9 x(t)dt,

IS continuous relative to the sup norm of the space C(K).

Hint. We cannot represent this operator by a matrix, because it acts on a
space of infinite dimension. However, if we note

u=(b-a)sup {|A({,9)|:t, seK},
we may evaluate

b b
YOI <[ AL 9IXOIdt <[ AL 9ldt< p x|

The asked continuity follows from the inequality |ly|| < p |IX|| -
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3. Show that the operator of derivation, D : C,'(1) — Cg(l), wherel R,
is not continuous relative to the sup norms of C,'(1) and Cg(l).
Hint. D is discontinuous on C,'(1), sinceit is discontinuous at the origin. In
fact, let the functions x,: | — R, of the sequence (X,), be defined by
sinnt

Xn(t) - \/ﬁ .
This sequence tends to zero when n— oo, since ||| < n™/2 However, the
sequence (X,'), of derivatives, is divergent, since x,’(t) = v/ncosnt .

4. Using a geometric interpretation of the equation f = const. , evauate the
norm of thefunction f: R® >R, of valuesf(x,y,2) = x+ y+ z.
Hint. Find aeR such that the plane =, of equation f (X, y, 2) = a , is tangent

to the sphere of equation x* + y* + Z = 1. Because n L (1, 1, 1), it follows
that the point of tangency belongs to the straight line {A(1, 1, 1) : Ae R}.

5. On the space Cg([-1, +1]), endowed with the sup norm, we define the
function f : Cg([-1, +1]) —» R, of values f (x) = x(0). Show that f is linear
and continuous, and find its norm.

Hint. The linearity isimmediate. If ||x|| =sup {| x(t)|: te[-1, +1]} <1, then
obvioudy | f (X)| <1, hence || f [|[<1. Functions like x(t) = cost, which have
the norm || x|| = | x(0)| = 1, show that the sup value is attained, i.e. || f || = 1.

6. Show that every full sphere, in anormed linear space (4, ||.|[), is convex,

but no straight line is entirely contained in such a sphere. Identify the linear

operator U: 2 &7, where (<, ||.||) is another normed space, for which there

exists M > 0 such that ||U(X)|| <M holds at all xe &.

Hint. We may take the center of the sphere at the origin. If x + 1ye§0, r)

isallowed for arbitrary 4 €I, including A— oo, then from the inequality
[ATIVIE= TA VNI Db + Ay (<[] +

it follows that y = 0. Because U carries a straight line into another straight

line, the single “bounded on & “ linear operator isthe null one.

7. Let U be a self-adjoint operator on the Euclidean space 2=T"" (of finite
dimension). Show that:

a) Thereexistsxg € Z'suchthat || X || =1 and ||U]| = |[UX)];

b) Thisx, isaproper vector of U ?;

c) The proper value of U 2, corresponding to xg , is = |JU]| %;

d) Either + ||U|| or —||U||isaproper value of U.

Hint. &) U is continuous, hence the supremum in the definition of ||U]| is
attained on the unit sphere, which is a compact set.
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b) If we note U(Xo) = Yo , then we successively obtain
VI = < U(xo), U(xo) > = <o, U(Xg) >=

=< U(Yo), %> < Vo)l IIXll = IVl <[IUI1 IIoll = VI V)| = (VI

The resulting equality < U(Yo), %o > = [JU(Yo)|l |IXol| is possible in a single
case, namely when U(yp) =1 Xg.
c) From U?(xo) = 4 %o we deduce |JU|F = < U(yo), Xo> = 1.
d) We may write the relation U%(Xo) = |JU|I* %o in the form

(U— Ul DU + [JU[IIN)(x0) = O.

If zo= (U + ||U|| I )(%)#0, then (U — [|[U]| ) (zo) = O, hence z, is a proper
vector corresponding to the proper value ||U|| . If zy = 0, then the expression
of zy directly gives U(xg) =—|JU|| | Xo.

8. Find the symmetric bilinear forms that generate the following quadratic
forms, and bring them into a canonical form:

a) ¢ =X+ 2y + 37 —4xy—4yz;

b) v =2xy + 2xz—2xt —2yz+ 2yt +2 7t ;

n

Q) x=2> %X.

i<j
Hint. a8) The matrix A, associated to ¢ , has three distinct proper values,
namely 4, = -1, 4, = 2, and 43 = 5, hence acanonical form of ¢ is

—U*+ 2V + BwA
b) The matrix of the corresponding bilinear formis
011-1

10-11
1-101|
1110

It has a ssimple proper value 4, = -3 and atriple one 1, = 1. The new base
may consist of (1, -1, -1, 1), which is a proper vector corresponding to Ay,
and three orthogonal solutions of the equation AX = X, which furnishes the
proper vectors of 1, = 1. Because this equation reducestox—y—z+ t= 0,
we may chose the vectors (1, 1, 0, 0), (1, 0, 1, 0), (0, O, 1, 1). The resulting
canonical formisu® + V2 + w* — 357 .

¢) The attached symmetric matrix has two proper values, namely 4; = n-1,
and 1, = -1, of multiplicity (n-1). A solution of the equation Ax = (n-1)Xx is
(1,1, ...,1), whileequation Ax = - xreducesto x; + ... + x,= 0.

n
A canonica formis y = X2 - Zx{z.
i=1

9. Let 2 be the linear space of real polynomial functions with degree not
exceeding 2, defined on [0, 1]. Show that the function f: Z'x Z—> R,
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1
fy)= [ Xy dt
0
is abilinear symmetric form on 2, and find its matrix in the base {1, t, t%} .
Verify directly, and using a canonical form, that f generates a positively
definite quadratic form.
Hint. According to the formulaa;; = f(e, ), we obtain

f@L) f@y f@Lt?) 1 12 13
A=|f(t,D) f(tt) ft?) |=|v2 U3 V4|
F(t20) F(t20) f@t2t2)] U3 1/4 1/5

To prove the positiveness of the generated quadratic form, we may use the
Sylvester’stest 4.37.

10. Discuss the signature of the following quadratic forms upon the
parameters a, b, ¢ eR:

1) ¢ =ax + 2bxy + cy’;

2) w =2C+ 2y + 2axz+ Y’ + 2yz+ az’;

3) y = X+ 2xy+ 2axz+ Y —2yz+ az .

Hint. 1) The cases when some parameters vanish are immediate. If a=0,
we may isolate a square, and write ¢ intheform

L@+ 2y ac-m9) v,
a a

2) Usethe Sylvester'stest; y ispositive at ae (1, 2).

3) In the attached matrix, the second minor vanishes; hence the Sylvester's
test doesn’'t work any more. The form y is degenerated at the valuea = -1,
and indefinite at any ac R.

11. Find the extreme values (if there are some) of the following polynomial
functions of the second degree:

f(xy,2)= X+ y+ Z—xy+ 2z-3X;

gx,y,2) = X+ V¥ —2Z7+ 2x—-2y + 3.

Hint. Realize trandations of the origin in R®, and make evident some
quadratic forms. In particular, replacingx =u—-1,y=v+ 1, and z=w,
brings g into the form u® + vV —w* + 1. Because the involved quadratic
form is indefinite, g(-1, 1, 0) isn't extreme value, i.e. in any neighborhood
of, (-1, 1, 0) there are points where g takes both greater and smaller values
than 1= g(-1, 1, 0).
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CHAPTER IV.DIFFERENTIABILITY

§81V.1. REAL FUNCTIONSOF A REAL VARIABLE

1.1. Linear approximations. In order to define the notion of differential
we will analyze the process of approximating a real function of a red
variable by alinear function. Let us consider that the function f: (a, b) >R

Is derivable at the point X, €(a, b)c R (see fig. IV.1.1), i.e. then exists the
tangent to the graph of f at M .

A y "
f (x+h) |

: o™

" } /00
F (%)
7 h 5
a. |—~—|ib >

0 X % *+h X

Fig.IV.1.1.

Taking into account the signs of the increments, we obtain the equality
f(xo+ ) —f(x0) = (%) - h+ @y (),

which indicates a possibility of approximating f (xo + h) by f (xo) + ' (Xo) h.

The error of this approximation is wy_(h). In addition, we may consider
that this method provides a “good approximation”, in the sense that the
existence of f/(xo) leadsto

h—>0| h

which means that Oy, (h) tends to zero faster than h does. Geometrically,
using the graph of f, this property of the error shows that the secant Mg M

tends to the tangent MgT whenever h— 0. Such an approximation is said to
be linear because the function L, : R—R, defined by L, (h) =f "(x) - h,

islinear (notethat f ' (xo) isafixed number here, and h is the argument).
As aconclusion, the above linear approximation is possible because there
exists the linear functional L, such that

i 100 1)~ 1) L, (0
m =
h—0 h

~/(xg)| = lim X =0,
h—0 h

0. (*)

183



Chapter IV. Differentiability

The linear functions like Ly, will be the object of the present chapter. As

usualy, Z(Z; &) will denote the set of all linear functionsL: Z°— &

1.2. Definition. Let Ac R be an open set, f: A— R be an arbitrary function,
and Xoc A be a fixed point. We say that f is differentiable at x, iff there
exists Ly, € < (R, R) such that (*) holds. The linear (and aso continuous)
functionL, iscalled differential of f at X, and by tradition it is noted dfy .

1.3. Theorem. A real function of onereal variable, say f : A>R, AcR, is

differentiable at xoe A iff it is derivable at this point. In addition, the values
of the differential are

dfy (h) = f(x) h

at each he R,
Proof. If f is differentiable at X, , then condition (*) holds. Now, let us
remark that the linear functions on R have the form Ly, (h) = c-h, for
some ceR. In fact, because linearity means additivity and homogeneity, if
weput k=11in L, (kh) =hL, (k), weobtain L, (h)=hL, (1), wherehis
arbitrary in R. Consequently, we have Lx, (h) =c-h,withc = Lx, (D). If
we replace this expression in (*), we obtain

lim f(Xg+h)—f(Xp) _c

h—0 h
which showsthat f isderivableat Xy, and f ’(xo) = c. In addition,

not

Ly, () = dfy (N)=c-h= f/(xo) h.
Conversely, the existence of the derivative f /(o) may be written as
lim 1 (o +h) — T(X0) — F'(Xo)h _ 0
h—0 h
wheref /(x) h= Ly, (h) isthe searched linear function. &

1.4. Remark. The concrete calculation of the differential df, of afunction

f: A>R, where ACRR, at a point X, €A, simply reduces to the calculation
of f(x,). Both f/(x;) and df_involve alimiting process, locally at Xo.

The first part of the above proof shows that the linear spaces < (R, R)
and R are isomorphic. However, the main point of theorem 1.3 is the strong

connection between differential and derivative, which explains why some
authors identify the terms “differentiation” and “derivation”. To be more
specific, we will use the word “differentiation” in the sense of “calculating
a differential”.
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If we calculate the differentia dfXO at each X, € A, we obtain afunction on

A, withvaluesin Z (R, R), which is a differential on a set. More exactly:
1.5. Definition. A function f: A> R, where Ac R, is differentiable on the

set A iff it is differentiable at each point xe A. The differential of f on A,
noted df: A—> Z(R, R), isdefined by the formula

df (x) = dfy .
1.6. Remarks. According to theorem 1.3, we have

df (x)(h) = df.(h) = f'(x)-h.

If we apply this formulato the identity of A, noted 1 : A— A, and defined by
1 (X) = x, then we obtain the derivative i’ (x) = 1, and the differential

diy(h)=h.
Consequently, for an arbitrary function f , we have

df ()(h) = f'(x) du (h) = £'(x) di () () ,
or, renouncing to mention the variable h, which is arbitrary in R,
df (x) = £ /(x) di (%).

Since x is arbitrary in A, we may omit it, and write the relation between the
functions, that is df = f /(x) d: . Because of the tradition to note d: = dx, we
finally obtain a symbolic form of the differential, namely

df = f/dx. (**)

This is the ssimplest, but formalistic way to correlate the differential and

the derivative. It is very useful in formulating the general properties of the
differential, but its exact meaning has the chief importance in practice (see
the exercises at the end of the section).
1.7. Theorem. Let AcR be an open set. The differential has the following
properties:
a) Every differentiable function on A is continuous on A.
b) If the function f: A—-B < R is differentiadble on A, and g : B>R is

differentiable on B, then gof: A—~ R is differentiable on A, and

d(gof) = (g'of) df.
c) If thefunctionsf, g: AR aredifferentiable on A, then f + g, Af, fg, and
f /g (where defined) are differentiable on A, and:
d(f + g) = df + dg
d(Af) = Adf
d(fg) = fdg + g df
d(f/g) = % :
Proof. a) According to theorem 1.3, the properties of differentiability and
derivability are equivalent, but derivable functions are continuous.
b) By adirect calculation of d(g-f),(h), we are lead to the formula

d(gof) = (gof)' dx= (g'of) f'dx = (g'of) df .
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Chapter IV. Differentiability

c) The problem reduces to the derivation of a quotient. Following the
definition of d(f /g)4 (h), and erasing the variables h and x, we obtain:

/ / / / /
dPJ:(lj vt g—2fg o 91 dx)—2f(g dx) _ gdf —Zfdg |
g) \g g g g

Alternatively, (**) allows formal proofs of b) and c). >

1.8. Remark. To solve practical problems, especially approximations, we
may use the notion of differential in a ssimpler sense. For example (see
[DB], etc.), the differential of afunctiony = f(x) isthe principal part of its
increment Ay = f(X + AX) —f(X), which is linear relative to the increment
Ax = h. Formally, the differentia of f is defined by dy = f’ dx , which is

considered equivalent to the derivative f ' = %

The problem of approximation reduces to the replacement of Ay by dy.
For example, for y = 3% —x, x=1, and Ax = 0.01, we obtain Ay = 0.0503
and dy = 0.0500 .

Finally, we mention that in the process of evaluating the error of such a
linear approximation, we need some formulas for the remainder of the

Taylor series.
1.9. Example. Let us consider that we have to evauate 38.1. Of course,

we know that ¥/8 =2, and for ¥/8.1 we can specify afinite number of exact
digits only. The number of exact digits is determined by practical reasons,
say four in this case. According to the formula of linear approximation

f(x+h)—f(x)=f/(x)-h
inthe case f(x)=%x,x=8,andh=0.1, we obtain /8.1~ 2.0083.

0 8 8.1 X

Fig. IV.1.2.

We remark that ¥/0.1 is not available on thisway using f /(0)!
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PROBLEMSSIV.1.

1. Using the linear approximation, calculate ¥/8.5, arcsin 0.51, and the area
of acircleof radiusr =3.02 cm.

Hint. 8.5 = 2° + 0.5, hence for f (X) = ¥/x we take xo =2 and h = 05 .
Similarly, for f (X) = arcsin x, we consider xg = % and h=0.01. The area

of the circle approximately equals
of = -3 +271-3002=9n1+0.121 = 28.66.
2. Using the linear approximation, find the solution of the equation
15cosx—13sinx=0
in theinterva (0, n/2).
Hint. x=arctg (1 + 1—23) may be approximated taking xo =1 and h = %
3. Find the differentials of the following functions on the indicated sets of
definition (intervals):
a) f: R->R, flinear; show that df, = f;
b) f: (—1,+x) >R, f(x)=In(1+ Xx);

.2 .

sin“ x if x>0
Q) f: RoR, f(x) = g

X if x<0.
4.Study the differentiability of the function f: R— R, of values

() — X if x<0

X) =
x%e X if x>0.

Hint. f is not derivable at the origin.
5.Using the Ohm's Law | = E/R, show that a small change in the current,
due to a small change in the resistance, may be approximately calculated by
the formula

Al = — I—RA R.
6. Let us imagine athin thread along the equator of the earth, and the length
of this thread increases by 1m. If this thread is arranged in a concentric to
the equator circle, can a cat pass through the resulting space?

Hint. From the formula L = 2ar we deduce that dr = Zi dL. The increment
T

dL = 100 cm of the circumference corresponds to an increment dr > 15 cm
of theradius, so the answer is“Yes".
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As we aready have seen in the previous section, the differential of a
function f : A>R, where AcCR, is a function df : A—» < (R, R), hence it
ranges in a linear normed space. The higher order differentials should be
defined on normed linear spaces. Similarly, the vector functions of one or
more variables, as well as thelr differentials, act between normed spaces.
This is the reason why we have to extend the differential of areal function
of onereal variableto that of afunction between normed spaces.

2.1. Définition. Let us consider two normed spaces (2, |-[,), (¢, |-[,),

anopenset ACc &, X €A, and afunction f: A— &. Asusualy, we note by
B (X, &) the set of dl linear and continuous functions from 2 to &/'.

We say that f is differentiable (in the Fréchet’'s sense) at the point X, iff
thereexists Ly € 9B (2, &) such that

| FOoh) = f(x0) - Ly, ()],
[ —
Inf, >0 [l
The linear and continuous function LX0 Is called differential of f at X, (in the

Fréchet’s sense). By tradition, Ly, is frequently noted dfx0 :
2.2. Remark. If wenote U ={heZ”: X, + he A} and Oy, ‘U— &/, where
o, (0) = f(x0+ h) = (x0) = Ly, (h),
then the condition of differentiability reducesto
o (],
>0 nl,
As for real functions, we may consider that Lx, Is alinear approximation

of f(xg+ h) —f(Xg) in aneighborhood of x,. Establishing the differentiability
of afunction is possible only if we have a good knowledge of B (%, &).

More than this, even if the differentiability is assured, there remains the
concrete problem of writing the differential dfx0 :

The following theorem is useful in this respect:
2.3. Theorem. If f: A> &/, AcZ’, isdifferentiable at Xy € A, then:
a) Thevaue of de0 atany heZ'is

i (= lm f(xo+th) - f(xg)

t
whereteR (thislimit is usually called weak, or Gateaux' differential);

b) dfxO iIsuniquely determined by f and X, .
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Proof. @) The case h = 0 isobvious. For h= 0, we may remark that
[ (x0+th) — T (%) |10+ th) = F(xg) - dify, (W)
—dfy, () =],
|| t 2 Ithl,
and t — 0 implies | th|, — 0 for each fixed he &". Consequently, because f

Is supposed differentiable, the claimed formula of dfx0 follows from
||ng‘| f (XO +tr::) — f (XO) . deO (h)

b) Accordingly to &), df, (h) is obtained as alimit, but in normed spaces

t—

=0.
2

thelimit isunique. Since h is arbitrary, dfx0 IS unigue too. >

2.4. Remark. The hypothesis that function f is differentiable is essential in
the above theorem, i.e. it assures the existence of the Gateaux’ differentia

_ not.
lim f (Xg +th) — f(Xp) =y ().
t—0 t 0

Conversely, the existence of Vx, & arbitrary he 2 does not mean that f is

differentiable at X, . More exactly, it may happen that either Y, (h) is not

oy, (h)
linear, or the quotient % has no limit (even if ¥, islinear). Simple
1
examples of these possibilities are the functions f: R R, defined by
Xy -
——_ if (%)= (0,0)
FY) = 14%x% +y?
0 if x=y=0 ,
respectively g: R >R, defined by
3
X7y .
if (x,y)=(0,0)
g(xy) =1 x° + y?
0 if (x,y)=(00).

The differentiability at a point is naturally extended to a set:
2.5. Definition. In the conditions of Definition 2.1, we say that function f is
differentiable on the set A iff it is differentiable at each point Xy €A. In this
case, the function df: A— B (2, &), defined by df (x) = df, , is called the
differential of fon A. If df is continuous, then we say that f is of class C*
on A and we notef e C*, (A).

The genera properties of the differential of areal function depending on
a single rea variable, expressed in theorem 1.7 of the previous section,
remain valid for functions between normed linear spaces:
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2.6. Theorem. a) Each differentiable function is continuous,
b) If f: A—B, where Ac Zand Bc &/ are open sets, is differentiable at the

point X ¢ A, and g: B— Z'is differentiable at f (X ), where (X7, || . ||s) is
another normed space, then g-f: A— X isdifferentiable at x,, and

d(go f)y, =dg¢(x,) ° dfy,;
o If f,g: As & are differentiable functionson A and A R, then f+ g

and Af are also differentiableon A, and d( f + g) = df + dg, d(Af) = Adf .

Proof. a) Differently from theorem IV.1.7, the proof shall be directly based
on the definitions. Let f: A— & be a differentiable function at an arbitrary
point X, €A. According to the corollary 111.4.6, the continuity of the

differential shows that for every h e 2 we have |df, (h)|, <|df, |- h],. In
the terms of the remark 2.2, the condition of differentiability takes the form
e @,
>0 [,
wao (h)Hz
U
|ox, ()], <[[hly, holds at each h €U for which |h, <3, . Consequently, at

In particular, for & = 1, there exists 6, > 0, such that <1, thatis

all such h, the following relations hold:
100 +h) = £ (x0)],=]df, (h) + @y (D), < [dlfy ()], + [0, ()] <
<t ]Il [y = (Jar, |+ 2) Il -

Now, for arbitrary £ > 0, we consider 6 = min{51,g/(‘dfxo ‘+1)} >0.1tis

easy to seethat for al h e U, for which |h|, <&, we have

[0t + 0 = £ 0 <t |+ 2)- Il < 2.
which proves the continuity of f at Xy . Since X, was arbitrary in A, we

conclude that f is continuouson A..
b) Besides U, involved in the differentiability of f, let us consider

V={ses f(X)+seB}.
Since A and B are open, we have U = 3, V = . The differentiability of f

at X, means that there exist df,_ € % (7, %) and o, :U — &/, such that
0

f(xo+h) —f (%) = df, (h)+ @ (h) holdsat each h U, and
0

o (h)H2 )

Inj,—~o0 |,
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Similarly, the differentiability of g at f (Xo) assumes the existence of the

functions dg () € B (&, ) and w?(x )V =2, such that
0

9 (%0) +9) — (T (X)) =g () () + 0T , (9

i | H“’?(xo) (S)H3
oldsaalseV,and IIm —M =2
Isl,~>0 g,

Sinces=f(x+ h) —f(X)eV whenever h €U, we obtain:

g(F (%0 + M) = 9(F (x0)) = dg 1 () (F (X0 + 1) = T (%0)) + 0, 1(9).
In terms of composed functions, this relation shows that

(9 1) + M)~ (3> F)(%) =gt ) ldty, () + 0 (B)+ 07 (9
Because dg (4 ) isalinear function, it follows that

(e )Xo+ h)—(ge f)(x0) =
= dg ) (A, () A1 ) o). ()4 08 5(9) =
= Ay sy = Aty KD + g o). ()4 08 (F (%0 + 1) — £ (x0)).
The membership dgf(xo) odf (Xg) € B (&, X') immediately follows from

the previous hypotheses df, e 23 (2", &/) and dg¢ (x ) € B (&, X), soiit
remains to define Oy, for the final proof of the differentiability of f o g.In

=0.

this respect we define the function o, : U — X7, which takes the values

g (1) = dg ) [0 ()5 08 (F (%0 + 1)~ F0x0))
and we show that it satisfies the condition
o (]
;>0 b,
Infact, if ¢>0isarbitrarily given, let us consider

, e
g > 0.

1+ dexo H + ‘dg f(X,) ‘
According to Corollary I11.4.6, the continuity of dg (%) implies that

199 @ ()], <[ |- |0, ]
holds at each h € U. Relative to the differentiability of f, we recall that
s 0
lim ————2=0,
I, >0 [l
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I.e. for arbitrary &' > 0, there exists 6, > 0, such that the inequality
a))IO (h)H2 <g" |,

holds at each h € U, for which [h|, <&, . Asapartia result, we retain that,
under the mentioned conditions, we have the inequality

f 1 *
109 (e (@, ()] <™ [dgs |y - *)
Similarly, the differentiability of g assuresthe relation

Hw?(xo) (S)Hg iy

lim L1008
9.50 4,

In more details, this means that for arbitrary ¢' > 0, there exists n > 0,

such that the inequality ngl(x())(s)u3 <&'|g, is valid & each s € V, for

which ||, <7 . Because f is continuous &t X, as aready proved at part a),
to this 7 there corresponds some &, > 0, such that h e U, and |h|, <&, are
sufficient conditions for | f (x + h) — f (xg)|,, <77 . Consequently, if h e U,
and |, <&, then we may replace sin the above inequality, and we obtain

08 (00 + 1) = 100 <" (%0 + 1) = T (%)

On the other hand, when proving part @) of the present theorem, we have
established that there exists 53 >0, suchthat h e U, and |h|, <83 imply

|7 (%0 + )= T ()<l [+ 2},
Consequently, if h € U, such that ||h||1 <min{5,,53}, then
o8y (100 + W)= 10))| < Lo |}y ¢
Finally, let us define 6 =min{d,,5,,03}. Because (*) and (**) are valid
atal h e U, for which |h|, <&, it follows that at these points we have

o, 0] <20+ [t |+ Jdg g 1 -

wao (h)
<¢ holdsat all h € U,
bl

. |  ex, (]
for which 0 < |h|, <& In other words, this means lim =0,
i~ [hl;

which showsthat go f isdifferentiable at Xy, and its differentia is

This inequality shows that the inequality ‘3
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d(go f)y, =dgs(x,) e dfy, -
To accomplish the proof, we recall the uniqueness of a differential.
c) Letf, g: A—» &/ bedifferentiable functionsat xy € A, and let A eR be

arbitrary. Because dfy , dgy € B (2, &), and B (&', &) isalinear
space, it follows that dfXO +dgXO A dfx0 e B(Z, &) too. It is easy to
see that at each non null h e U, we have
(F + @)%+ M) = (1 + 9)(x9) — (clf, + g, )], _
[hl )
0+ h) = f(x0) —dfy, ()], 9% + )= g(%0) — gy, (M),
I, ' I,

This inequality shows that f + g is differentiable at X, and its differential
has the (unique) value d(f + g)XO = dfXO +dgx0 . Since Xy is arbitrary in A,

we obtain the claimed relation, d(f + g) = df + dg..
By analogy, ateachh ¢y \ {0}, we may write the relation

)0 + B = (A )(x0) — (2 df J(M)],
I, )
|00+ h) — f(xg) —dlf, (M)
:|,1|. :
Il

Consequently, the differentiability of f at xo implies the differentiability of
(Af) at this point. In addition, d(/lf)x0 =1 dfx0 Is the (unique) value of

this differentia at X,. Taking into account that Xy was arbitrary in A, we see
that Af isdifferentiableon A, and d(Af)=A4-df . &

|

Now we can define the higher order differentials as follows:
2.7. Definition. Let f be a function in the conditions of the definition 2.1.
We say that f istwo times differentiable at X, iff:
a) fisdifferentiable on an open neighborhood V of Xy ;
b) Thefunction df: V- B (2, &) isdifferentiable at X .
In this case, the differential of df at X, is called second order differential

of fat Xy, and it isnoted d*f, . Briefly,
d?f, = d(df)y, € B(L, B(L, X))

If fistwo times differentiable at each xe A, we say that f is two times
differentiable on A. The function df: A~ B( %, B( X, &)), defined by
(A’F)() = d*f, = d(df),

is called second order differential of fon A .
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2.8. Remark. In the terms of § 111.4, and particularly according to theorem
111.4.18, the space B( X, B (2, &)) isisometricaly isomorphic with
thespace B ( 4, 4; &) of dl bilinear functionson &'x &7, which range
in 4. Consequently, we may consider that d°f, e % 2, Z; &).

2.9. Proposition. d® = 0, where x denotes the independent (real) variable.
Proof. By definition 2.7, d° = d(dx). As already discussed in the previous
section, dx stands for d: , where 1 : R—» R is the identity of R (defined by

i(X) = x at al xeR). Because 1/ (x) = 1, the differential of the identity takes

the values dx(h) = h at each xeR. Consequently, di: = ¢, i.e. di is constant.

The claimed relation d(dx) = O holds because the differential of a constant
function always vanishes. >

2.10. Proposition. If f € B (2, &), 1.e.f islinear and continuous, then:
a) f isdifferentiableon &,
b) df, =f ateachxy e, and
c) df=0.

Proof. For &) and b) we check | f (xg +h) - f (xg) - f (h)],=0.

To prove ¢) we interpret b) as showing that df is constant. &

In the last part of this section we will deduce properties of the differentia
in the case when 2" and / or & reduceto R", for some n>1.

2.11. Proposition. Let function f: A—R be defined on the open set AcR.
If the function f is two times derivable, then it is two times differentiable,

and dzfxo (h, k) = f 7 (x0) h-k holdsat each x, ¢ A
Conversdly, if f istwo times differentiable, then it is two times derivable,
and we have f” (%) = d*f, (1,1) ateachxye A

Proof. Let f be two times derivable. Because the map (h, k)i f ” (xo) hkis
bilinear, the function L, (h) : R—>R, of values L, (h)(k) = f " (x)) hk, is

linear. In the very definition of the second order differential we have

ﬁ (df )(xo + h) = (df )x0) — Ly, (M)] =

(df)(xo + ) - df (1))~ 1/ (i) -K| | =
|h| k;tO

|h|k O[ f/(x0+h)-k—f’(xo)-k—f”(xo)-h-k‘] =
|h|‘f (xo+ 1)~ f/(x0) = 1" (x0) -1 .
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Because ' is derivable at xg , this expression has the limit zero when h
tends to zero, hence df is differentiable at Xo, and d? fy, (0 K) =" (x0) hk.
Conversely, if f istwo times differentiable, then df is supposed to exist in

a neighborhood of % . According to theorem 1V.1.3, f / (x) exists at all x in
this neighborhood, and df, (k) = f / (x) k . But f is two tomes differentiable,

hence there exists d*f,_, such that d*f, (h,k)=d?f, (11)-h-k,and
1 ‘f/(x0+h)-k— t/(x0)-k—d?f, (1D -h-k

lim| —sup =0
h—0 |h| k=0 |k|

In other terms, there exists the limit

-l (xg+h)— f/(xg) MOt
dzfxo(l’l):r']'_% (X0+r)1 (%) ™ £ (xg).

Consequently, f* (xo) = d*f,_ (1, 1). &

2.12. Proposition. Let A be an open subset of R, and let f: AR™, m> 0,
be a vector function of componentsf ': A>R, i = 1,2, ..., m. Function f is
differentiable at a point xg € A iff all of its components are differentiable,
and, in this case, its differential has the form

1 2
dfy, = (df ,df 2 ,...df™)

Xo 17!
Proof. The differentiability of f involves a limiting process, which reduces
to limits on each component. On the other hand, the general form of a
linear functionLe (R, R™) = B (R, R") is
L(h) = (cih, &h, ..., cph) .
In particular, the differential of f at X, has the same form,
dfy, (h) = (cih, c2h, ..., cuh),

wherec = f'(x)) forali=1,2,...,m &

2.13. Remark. We may use the above proposition with the aim of writing
the differential of a vector function as the differential of areal function of
one real variable (if necessary, see the previous section). To obtain that
form, we first introduce the derivative of the vector function f at xo by

£ () = (1Y (%), 2/ (30). ™ (0))
Using this notion, the expression of the differential of f at X, , established in
proposition 2.12, becomes

dfy, () =f'(x) - h.
The only difference between the two cases is that "-" stands here for the
product of avector, namely f /(xo), by ascalar heR .
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For studying the differential of a function of more than one variables, we
need the following specific notions:
2.14. Definition. Let us consider f: AR, where AcRP isopen, and p > 1.
We say that f is partially derivable a the point X, = (%°, ..., X)) €A,
relativeto thei’th variable, iff there exists the finite limit (in R),
i F O e X216 + P X1 Xp) = T (X0) ot of ).
h —0 hi aX|
If so, thislimit is called partial derivative of f relative to x; . In other words,
to obtain the i'th partial derivative, we fix the variables different from x ,

and we derive as usually relative to this variable.
If fispartially derivable relative to al of its variables, at the point X,, then

the vector ﬂ(x()),...,i(xo) Is said to be the gradient of f at X, , and
8X1 6Xp

we noteit (grad f )(Xy), or smply grad f(Xp).
2.15. Proposition. Let us consider a function f : AR, where AcRP is
open, and p > 1. If fis differentiable at X, = (%°, ..., X,) €A, then it has dl
the partial derivatives at Xy, and its differential has the form

dfy, (h) = <gradf(x), h>,

whereh = (hy, ..., hy) e R?, and <., . > denotes the scalar product of the
Euclidean space RP. In other terms, we represent the differential de0 (h) by
the gradient of f at X, according to the formula

of of
df, (hy=— : et —— -hy.
x, (M) axl(XO) hy + +axp(x") D
Proof. By hypothesis, there exists L, < < (R”, R) = 8 (R”, R), such that

[ F(xo+h) = F(x0) - Ly, ()
Im =0
In[—0 [h
A linear function from R” to R is specified by cy, ..., ¢, € R, in theformula
LXO (h) = C1h1+ Lot Cphp

In our concrete case, we have to express the constants ¢y, ..., ¢, by f. With

this purpose, for eachie{1, ..., p} , we consider increments of the form
h=(0,...,0,h,0,...,0),

such that Ly, (h) = ¢ h;. The differentiability of f leadsto

O e X+ By X9) = (%)
lim -
h—0 hi

196



§ IV.2. Functions between normed spaces

which shows that ¢, = S—f(xo) foreachi =1, 2, ..., p. In conclusion, the
i

differential takes the form

of of
df, (h)= — : et —— -hy =<gradf(xy), h>,
0 ()= 5 00 Mt o 00)hp = < grad )
which gives a representation of dfXO by grad f (o). &

2.16. Remarks. 1) The simple existence of (grad f)(x,) does not assure the
differentiability of f at x,. For example, the function f:R? R, of values

Fx,y) = 1 ifx=0andy=0
Y70 ifether x=00ry=0,

is partialy derivable at the origin, and Z—f(0,0) = Z—f(0,0) =0. However, it
X y

Is not continuous at (0, 0), hence it is not differentiable at this point. In the
next section we will see that the continuity of the partial derivatives is a
sufficient condition for its differentiability.
2) The most frequent form of the differential of a function depending on
severa red variablesis
df = of dxq + o dx, +...+idxp.
8X1 6X2 6Xp

To obtain the precise meaning of this formula, we have to consider the
projections P;: R° >R, expressed by P (X, ..., X, ..., Xp) = X;.. Itiseasy to
see that each projection P, 1 = 1, 2, ..., p, is a linear and continuous
function, i.e. Pe & (R°, R) = 2 (R°, R). In addition, each P; is
differentiable at any X, RP, and dP;(xy) = P; . By convention (and tradition)
we note dP; = dx;, so that (dx;)y (hy,....hp) = Pi(he, ..., hy) = h; for all

indicesi = 1, 2, ..., p. Replacing these expressions of h; in the differential
of f, we obtain the formula

of of
dfy (h) = a_xl(XO)(dxl)XO (h) +---+%(XO)(pr)XO (h).

Because h is arbitrary in R, we obtain the relation

dfy, = ﬂdxl +..t idxp :
0 6X1 x 8Xp «

It remains to take into consideration the fact that xg is arbitrary in the set
AcRP, on which f is differentiable. In applications we sometimes meet the
formuladf = < gradf, dx>, where dx = (dxy, dxy, ..., dX).

The following notions and notations will be useful in introducing the
differential of avector function of several real variables.
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2.17. Definition. Let the spaces 2= R” and &= R™ be endowed with their
Euclidean norms. We note by A an open set of &7, and we define the vector
function f: A— &/, of components f : A->R, | = 1,2, ..., m, which are
considered partially derivable. Then the matrix

My M o

o 00) SE00) 2L 0)
FOQ) =] oo

2 00 50) . S )

is called Jacobi’s matrix of f at Xy € A. Obviously, at each X, fixed in A, we
have Jf (Xo) € Mmp(R). In the case m = p, the determinant

not.
Det (1) = oL ™ 00)

is caled Jacobian of f at X .
2.18. Proposition. If the function f in the above definition is differentiable
at X €A, then its differential has the value

Ay Oy o
o 00) 00000 |
dfy ()= ) h=|. .o, :
oy Oy Oy | Lo
o 00) 52 0) . 22 00)

Proof. Because dfy < < (R R"), i.e. it isalinear operator acting between

finite dimensional linear spaces, it follows that its value at an arbitrary
point h= (hy, ..., hp)T R isgiven by the formula dfxO (h) = (cij) h. What

remains is to see how the constants c; depend on f . If f; ,..., f,, are the
components of f, then, similarly to proposition 2.12, it follows that they are
differentiable at X, and the general form of their differentialsis

(dfi)x, (N)=cihy + ... +Ciphy

wherei =1, ..., m. More than this, according to proposition 2.15, we know
that the values of these differentials are given by the formula

() (0= () + ot )
i /X%, 6X1 0 axp 0/'"p
. o
foreachi =1, ..., m. Consequently, ¢; = a_(XO)' &
X.
j
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§ IV.2. Functions between normed spaces

2.19. Remark. a) As before (see Remark 2.16), the existence of the partial

derivatives ﬁ(xo) fordli=1,..,mandj=1, ..., p, which represent
X.
j
the elements of Jf (Xo), does not assure the differentiability of f at X .
b) We may write the differential of a vector function of several variablesin
a symbolic form too, by using the projections P, : R >R, j= 1, ..., p. In
fact, if we recall the traditional notation dP; = dx; , then we have

of of
a_xj-(xo)(dxl)x0 o "'i(xo)(dxp)xo

s

of of
a0, 4+ ) (),

If fis differentiable at any X, e Ac RP, then we may omit to mention X ,
and so we obtain another symbolic form of the differential, namely

a—fldx1+ +5_f1dxp
O0X1 X

afi=|. ... ... .. ..
af—mdx1+ X
6X1 p

This one leads to the shortest form of the differential, which is
df = (3F) -(cbg... dx, )T = Fox.

If we compare the formula df = f ' dx , which represents the differential of
areal function depending on a single real variable, to the similar formulas
df = < grad f, dx > and df = Jf dx for functions of several (real) variables,
then we see that grad f and Jf stand for f /. In this sense, we can interpret
grad f and Jf as representing the derivative of areal, respectively vectorial
function of severa variables.

2.20. Approximating functions of several variables. The differential of a
real function of several variables (sometimes called total differential) may
be interpreted like a linear approximation of the (total) increment of the
function, corresponding to the increments Ax = dx, Ay = dy, etc. of the
variables. For example, if f(x, y) = X* + xy— Y7, then
Af (X, y) = f(x+ Ax, y + Ay) —f (X, y) =

=[(2x + y) AX+ (X—2y) 4y] + [AC + Axdy — Ay7] .

The principal part of thisincrement is the differentia
iy = (2x +y) dx+ (x—2y) dy,

which expresses alinear approximation of the forthcoming error.
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Chapter IV. Differentiability

PROBLEMSE§IV.2.
1. Show that every continuous bilinear function f € 9B, (21, 4>, &) is
differentiable at each (xlo, X)) € X1x% =&, and
df o xo) (k) = f(x2,k) + f(h,x9).
Hint. Evaluate
eopap @R, Jrtl, I

h,k I Ik IR 1 Ik
N [ R

2. Show that for real functionsf and g, depending on several real variables,
the ordinary rules of differentiation remain valid, i.e.

d<f+g)=df+dg:d(fg)=fdg+gdf;d(f5)=

<[ Ih-

gdf — fdg

g2

3. Show that the relative error of a product of real functions of severa
variables approximately equals the sum of the relative errors of the factors.

4. Evauate the function f (x, y) = X*siny at x=1.1, y=33°, approximately.
Hint. Use the formula of the linear apprOX|mat|on

of
f(xo+hyo+k)= f(XO1YO)+&(XO’yO)'h"‘@(XO’)/O)'k :

5. Compute 1.02*%" approximately.
Hint. Take f(x,y) = X', X = 1, Yo = 3, Ax= 0.02, Ay = 0.01, and compute

1.023%% = 1 + df 15 (0.02, 0.01).

6. The measurements of a triangle ABC yield the following approximate
values: sidea =100m + 2m, side b = 200m + 3m and angle C = 60° + 1°.
To what degree of accuracy can be computed side c?

Hint. Express c by the generalized Pythagorean formula and compute dc.

7. Show that the function f :R?— R, which takes the values

~ Y if (xy)=2(0,0)
f(x, y) = {4/x? + y?
0 if (xy)=(0,0) ,

is continuous and has partial derivatives on the entire R? but it is not
differentiable at (O, 0).
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We will use the notions introduced in the previous section to develop in
more details the differential calculus of real functions depending on several
real variables. We begin by the directional derivative of ascalar field:
3.1. Definition. The real functions depending on several real variables are
named scalar fields. If f: A>R isa scaar field, i.e. A is an open subset of
RP, p>1, then the sets of the form

{xeA: f(X)=c} =&,

where cef (A), are caled level surfaces. In particular, each point XA
belongsto alevel surface, namely that one for which ¢ = f (X;). We say that
f is smooth iff it has continuous (partial) derivatives at each X, € A.

L et us choose apoint x < A and aunit vector (= (¢1,(5,...,/ ;) € R’ (some

authors call ¢ direction, and specify the condition |¢|=1). We say that the

field fisderivableinthedirection ¢ at the point X, iff there exists the limit
. f(xg+10) = f(xg) Mo of
lim = — :
t—0 t ol (%)

If so, then we call it derivative of fin the direction ¢ at the point X .

3.2. Remarks. a) The derivative in a direction may be interpreted in terms
of level surfaces. In particular, in R®, we may illustrateit asin Fig.1V.3.1.

A

Y4
Sf(m
/

P

Fig. IV.3.1.

Because |¢| =1, we have MoM = | t¢|| = t, hence the directional derivative
of fat My alowsthe more geometrical construction
ol M—>M, MoM
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Chapter IV. Differentiability

In particular, we can see that the most rapid variation of the field f at the
point M, is obtained in the direction of the normal to the level surface
(which exists for smooth fields), when MgM is minimal.

b) The derivative of f in adirection /¢ at the point x,e A reduces to the usual
derivative of g:(-9, 8) >R at O R, where g(t) = f (o + tl). The domain of g

IS determined by the number & > 0, which is chosen to obey the condition
that Xo + tl e Afor al te (-9, 8) (possibly because A is open!).

c) When we speak of a direction, we tacitly include the orientation of the
vector /. The derivative in a direction depends on this orientation, in the
sense that reversing the orientation changes the sign. More exactly,

of of
5 00 =5 00)-
d) Each partial derivative is a derivative in the direction of one of the
coordinate axes. More exactly, if ¢, =(0,...,0,10,...,0), where 1 stands on
the K™ position, denotes the direction of the K" axis, k € {1, ..., p}, then
T (x0) =2 (%)
an %0 (%k '
Now we can extend the previous result concerning the partial derivability

of adifferentiable function, according to the following:
3.3. Theorem. If f: AR, A cRP, isadifferentiable field at x,c A, then it

isderivablein any direction ¢ eRP, and
of
FICORCAMOR
Proof. According to theorem 1V.2.3, the differential at ¢ equals

(/)= t”_r)%f(XOHi)_ f (Xp) _

In the terms of the above definition, this limit means % (Xo) - &

3.4. Consequences. a) The derivative of the scalar field f in the direction 7,
at the point X, , equals the projection of grad f (Xo) on the unit vector 7. In

fact, thisis a consequence of the relations | ¢|| = 1, and

%(xo) =d f, (1)=<gradf(x), £>= |grad f (xo)|- cos(£MMgP).

b) The greatest value of such a projection is obtained when the vectors ¢
and grad f (xo) are parallel. This means /| n, where n denotes the normal to

the level surface at X, . In this case, since |n| = 1 too, we have

of
%(Xo) =< grad f(Xxp), n>:||grad f(xo)|| :
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§ IV.3. Functions of several real variables

In R3, after calculating (grad f )(x% ), we can find Z—L(xo) using the
sphere of diameter grad f (xp), asin Fig.IV.3.2., whereit equals My Q.

A
z

v

Fig. IV.3.2.

The following sufficient condition of differentiability is very useful in
many practical problems:
3.5. Theorem. If fis partially derivable on the neighborhood V of x, and all

its partial derivatives ai 'V >R, k=1 p, are continuous at X, , then this
Xk

function is differentiable at X, . By extension to A, f eC%R(A) implies the
differentiability of fon A..

Proof. Let usnote xg = (xf,xg,...,xg) e A,andU ={heRP: x +h eA}. If
h=(h,hy,...hy) €U, including the case of some hy = 0, then we may
decompose the increment f (X, + h) —f (Xo) in the following sum:

[£ 0@ + 1,58 + g 3G 1) = 00,58 + e, XG + B
10058 + gy xS+ h) = £ 0,380 + g, 3G ) [+
+[f (xf,xg,...,xg_l,xg +hp) - f(xf,xg,...,xg_l,xg)J :

Using the Lagrange’s theorem on finite increments, successively applied
to each of the square brackets from above, we obtain

of
f(Xo +h) —F(X0) = My = (£, X9 + g XD + D) +
0%

of

h2'%

of
€ €0, X3 + g, XD +hp) + ..+ -E(xf,...,xg_l,gp),
where & isbetween x? and x? + hy for all k=1,p.
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Chapter IV. Differentiability

Now, let us consider the linear function L ‘R >R, of values

- af .
Ly, (N1, ... h )——(Xo) rh"‘a(xo) hy + +%(Xo) hp .

To show that LX0 |sthe differentia of f at x,, we first evaluate
fxo +h) —F(x) — Ly, (h) =

of of
= {8_)(1(51’)(8 + h2,...,xg +hp) —a—xl(xo)} hy +

f of
"[;;0& £2. G + g X +hp)—£(xo)]h2+---+

LI TN N VN |
+ |:ﬁ(xlwuxplﬂfp) o, (XO):| hp
Then, the differentiability of f at Xy follows from the inequality
00+ )= fx0) — Ly (0] _

[h
< x8+h2,...,xg+hp) (xo) |”::L”|
of 0

+ o x3+h3,..., +hp)——( )‘ ||h||

ot [ng|

(K Xp_1,Ep) ( )|
o |
In fact, since | | <1 for all k=1, p, and the partial derivatives of f are

continuous & Xo, it foI lows that
o 00— f00) - L ()]
Inj-0 I
The last assertion of the theorem follows by applying the former result to
arbitrary xo €A &

We mention that the continuity of the partial derivatives is still not
necessary for differentiability (see problem 2 at the end of the section).

The rule of differentiating composed functions, established in theorem
IV.2.6-b, has important consequences concerning the partial derivatives of
such functions:
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§ IV.3. Functions of several real variables

3.6. Theorem. Let us consider the functionsf: A»B, g: B -R™, where
AcRP and BcR" are open sets. If f is differentiable at x,cA and g is
differentiable at f (xy) B, then g-f: A>R™isdifferentiable at X, and for the
corresponding Jacobi matrixes we have

J(ge ) (X)) =Jg(f (xg)) - I (o). (*)
Proof. The differentiability of g-f was established in theorem IV.2.6-b, as
well as the formula d(g - f)x0 = dgf(xo) o dfxo. According to proposition

1V.2.18, we represent these differentials by Jacobi matrixes. Using a well-
known theorem from linear algebra (see [AE], [KA], etc.), the matrix of the
composed linear operators, in our case dgf(xo) and dfxo, equals the

product of the corresponding matrixes. &

3.7. Remark. The formula (*) from above concentrates all the rules we
need to write the partial derivatives of composed functions, as for example:
a) Thecasep=m=1,n=2. Iftisthevariableof f, and u, v are the
variables of g, then formula (*) becomes:

/
(go f) )= Eg—g(fl(t), £, (1) %g(fl(t), fz(t))).[:lzl 8} _

= Z—g(fl(t), fo(t))- f{ (t) +%g(f1(t), f(1)- f2(1) -

b) Thecasep=n=2 m= 1. Let x, y bethe variables of f and u, v be the
variables of g. From (*) we obtain:

(29 Dy 292Dy |-

0 oy
ofy ofy
—(xy) —=(xy)
0
- aV (9f2 afz
o (09 ()
X oy

Consequently, the partia derivatives of h= gof are:
— (X, ¥) =—=(f1(X,¥), fo(X, V)—(X,¥) +—(f1(X, V), fo(X,y))—=(X,
ax( y) aUI(1( y), fa( y))ax( y) aV(l( y), f2(xy)) ax( y)

h of of
Z—y(x, D=2 (f1(xy), Talx WG + (11 xy), ol W 2L )

Generalizing these formulas, we may retain that each partial derivative of
a composed function equals the sum of specific products taken over all the
components, which contain the chosen variable.
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Chapter IV. Differentiability

c) The case p = m = n. In this case, it is recommended to interpret f and g
as transformations of R" . Because the determinant of a product of matrixes

equals the product of the corresponding determinants, we obtain:
D((g° f)1,-(g° F)n) _ D(Gy-1Gn) D(fy,..r, )
D(Xq,--» X ) D(Uq,..,Uq) D(Xg,es Xp)

Another important topic of the differential calculus refers to the higher

order partia derivatives, which are introduced by the following
3.8. Definition. Let f: AR, where AcRP is open, be partially derivable

relativeto x,, 1<k < p, in aneighborhood Vc A of X €A. If :—f:V—ﬂR{ IS
Xk

aso derivable relativeto X, 1< j < p, at Xo, then we say that f is two times
derivable at X, relative to x, and x; . The second order derivative is noted
o ( of 02 f
—| — |(Xp) = (Xp) -
an an anan
If al second order derivatives there exist and are continuous on A, then
we say that f is of class C? and wewrite f € C2 (A).

By induction, we define the higher order derivatives, k; times relative to
X1, and so on, k, timesrelativeto x,, wherek; + ... + k, = n, noted

o"f
Kk k,
X" ...0X"
Similarly we define classes C" and C .

3.9. Remark. The higher order derivatives depend on the order in which
2

means that we have first

we realize each derivation. In particular,
6Xj8Xk
derived relative to x, , and after that relative to x; . The result is generally
2

different from , Where we have derived in the inverse order. For

anan
example, let us consider the function f: R*> R, of values
2 2
X< —y .
Xy— if (X, y);t(0,0)
fxy) =17 " x%+y?
0 if (x,y)=(0,0) .
0% f 0% f

A direct evaluation showsthat ——(0,0) =1 ——(0,0) = -1.
oxoy OYyOX

Such gituations justify our interest in knowing sufficient conditions for
the equality of the mixed partial derivativesrealized in different orders:
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§ IV.3. Functions of several real variables

3.10 Theorem. (due to H. A. Schwarz) If f e CZ (A), where AcRP is an
open s&t, then the equality
o%f  0°f
anan 8Xk5Xj
holdson A, fordl j,k=1,2,...,p.
Proof. It is sufficient to discuss the case p = 2. Let us consider the auxiliary
functions ¢ (x, y) =f(x, y) —f (X, y) and v (x, y) = (X, y) —f(X, Yo), SO that

(% Y) =@ (X Yo) = w (X Y) — v (X, Y).
By applying the Lagrange' s theorem to each side of this equality we obtain:

aa—‘y”(x,m)«y—yo)=‘2—"X’(51,y)-(x—xO).

It remains to replace ¢ and w, namely to apply the finite increments
theorem, and finally to use the continuity of the mixed derivatives. <>

3.11. Remark. The continuity of the mixed derivatives is not necessary for
their equality. Thisisvisiblein the case of f: R R, of values

2 x°
yein 1+ — if y=0
fxy) = y?

0 if y=0.
In fact, adirect calculation leads to

4x3y ,
0 f — = if y=0
%(X, y)= (X2 + y2)2
0 if y=0 .
This function is not continuous at the origin. However,
2
T 00=1im 2| L x0 -2 00 |0,
oxoy x—0 X | oy oy
0% 0% f o
hence the equality ——(0,0) =0=——(0,0) isvalid.
OyOX oxoy

Now, let us study the relations between the second order differentials and
the second order derivatives of a real function of severa variables. This
study is based on a specific notion involving the partial derivatives:

3.12. Definition. Let us consider that the function f: AR, where AcRP is

an open set, has all second order partial derivatives at Xoe A. The matrix

2
H () = [ N (xO)j
i OX

is called Hesse matrix (or Hessean) of f at Xo.
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Chapter IV. Differentiability

Obviously, the Hessean matrix of f e CH%(A) IS symmetric by virtue of
Schwarz' theorem 3.10. To see how the Hessean matrix represents a second

order differential, we recall that dzfxO is a bilinear function, and matrixes

represent bilinear functions on finite dimensional spaces. More exactly:
3.13. Lemma. Let B denote a fixed orthonormal basis in R (e.g. the

canonical one, asin 1.3.8b). To each bilinear function B : R° x R® - R there
corresponds a square matrix B = (b;)ij=1,.. p such that B (x, y) = X' By, i.e
by - bp| (W
B(x,y):(xl xp)- : col
b1 Bpp ) \ Yp
Proof. Referred to the (canonica) base 1B ={ey, ..., e} of R, we have

p p
x= Y xgandy= > yjej.
i=1 j=1

p
|fW€nOtebij:B(Q,Q),thenB(X,y): Zb”leJ . &>
i,j=1
In our case, we have to express the components bj; by the corresponding
valuesof B = d? fX0 , using the second order partial derivatives of f.

3.14. Theorem. Let B ={ey, ..., &} be the canonical basis of R”. If the

function f: A >R, where AcR” is an open set, is two times differentiable
at Xpe A, then:
a) f istwice partially derivablerelativeto al its variables;
0% f
5Xi aXJ
C) d? fXO IS represented by the Hessean matrix H f(Xp), i.e.
2
d?f, (h k)= f ot
i,j=19% %Y
Proof. For the assertions @) and b), we start with the hypothesis that there
exists d°f,_ < % (R, 93 (R”, R)) such that

| dex0+h ~df, —d?f, (h, )H )

Inj—0 [h
Using the expression of the norm of alinear function, we obtain

b)

(xo) = d*fy (e, 8)holdsforali,j=1,..p;

(XO)hi kj .

0.
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§ IV.3. Functions of several real variables

dfy . (K) = dfy (k) —d®fy (hK)
Im =
|0 [k

of
Let us remark that df, (ej):E(XO)’ and deXO (h,k) =u .deX0 (e,e)
whenever k= g and h = u e for someueR. If u—0, then h— 0, hence

o o

+ue)—
|- ox. (X +ug) ox. (%) 2 : |-
im - ) =0.
u—0 u % (9 €]
c) We apply the above lemma 3.13t0 B = dzfx0 : &

3.15. Remark. The existence of the second order partial derivatives does
not generally assure the twice differentiability of a function. To exemplify
this fact we may use the same function f: R*-R asin remark 3.11, namely

2 X
yein 1+ — if y=0
f(x,y) = y2
0 if y=0.

In fact, it has null partial derivatives of the first and second order at (O, 0),
so if we suppose the double differentiability, then we should have

2
df(0,0) = 6%)(R2,R)’ and d f(0,0) :9%’(R2,%’(R2,R)) .
Consequently, from
| deh —df () —d2f 0 (h)H i
In|-0 h

we deduce

of of

—(hy,hy)kq + —(hy, )k
- ||dfh||:0: - ()] _ ” ‘ax(hl 2)Kg ay(hl L)
Ihj—0 | Ii—o [hlk| [n—o0 il

On the other hand, evaluating Z—f(x, y) and Z—f(x, y) a (X, y) # (0, 0),
X y

j, we obtan M—i which

u
Ve-1 [

does not tend to 0. The contradiction shows that d*f does not exist at (0, 0).

and considering k = (0,1), h = (u,
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Chapter IV. Differentiability

As in the case of the first differential (compare to theorem 3.5 from
above), we can show that the continuity of the second order derivativesis a
sufficient condition for the double differentiability:

3.16. Theorem. Let Ac RP be an open set, let X, € A be fixed, and let V be
aneighborhood of Xy, suchthat V — A. If thefunctionf: A — R has partia
derivatives of the second order on V, which are continuous at X, , then this
function is twice differentiable at xo. In addition, if f € C*(A), then f istwo
times differentiableon A..

Proof. If wenote h=(hy,hy,....h,), and k= (kq,kp,....k), then the map

P A2
(h,k) > Z o°f
i, j=10% 0K
is bilinear fromR°x R toR . Toeachh € R \ {0,,} we attach alinear
. . . P 52f

function L, (h), which carries keR” to
i, j=1O% 0K

that df isdifferentiable at Xy, we first evaluate:

(@) (%0 + ) = () (x0) — Ly, ()] _

(X0)-hy -kj

Ih|
1 iy, (K) — df () = L, ()(K)] _
I o, K|
P of p PP 52¢
Zax-(xom)'kj_za( X0) -k zza (xo)hik;
1 sup j=1""] j=19% j=1i=19%X] _
L K|
P 02t
. 27()(0 h)—f(xO) Za x (xo)h |-K;
j= J J
= . sup <
I o, K|
P azf
_z*(xom)—*(xo) z (Xo)hi \,\
<= . sup L= 7]
Il o, K|
z 0o +h)- I (x0) - 2 o).
T B 0 e O ka0

According to theorem 3.5, the continuity of the second order derivatives
issufficient for the differentiability of the first order derivatives, hence
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§ IV.3. Functions of several real variables

P 52§ of
zax,a (%) - h [glx (h),

i=1 Xj j
and

of of
8XJ_(XO )—J(XO) d[@xj JX (h)

m
Ihj—0 I
Becausethisisvalid for eachj = 1, ..., p, we may conclude that
|(df )(xg +h) - (W) 00) - Ly 0] _
||h||

p aXJ J 6)(,8 0

= [h Inj—0
Consequently, fistwo times differentiable at X, and
’ P 52f
d=fy (hKk)= >
i’jzlaxi aXJ
The last assertion of the theorem follows from the fact that if f € C* (A),
then theinitial hypotheses hold at each x, €A >

<

(X0) - hy -Kj .

3.17. Remarks. 1) The condition of continuity of the second order partial
derivativesis generally not necessary, for the second order differentiability.
For example, we may consider the function f: R* R, defined by

(2 + y?)2sin——1 if (x,y)=(00)
f(xy)= x% + y?
0 if  (x,y)=(00) .
This function is two times differentiable at the origin, and d’f 00 (M)(K) =
a al h, k e R* (see problem 3 at the end of the section), but its partlal
derivatives are not continuous at (0, 0).
2) Similarly to the first order differential (see remark 1V.2.16.b), we may
write the second order differential in a symbolic form too. We obtain it if
we take into consideration the projections P; : R°—» R, defined by P; (X) = x;
fordli=1, ..., n. Because of the tradition to note dP, = dx; , we have
(dx)x, () = Pi(hy, ..., hy) = h
fordli =1, 2, ..., p. As aconsequence of the above theorem 3.14.c, we
represent the second order differential by the formula
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2
2t (= Y O (xhk; =
i, j=1OXi%Y
-y 0°f (x0) - [(@¢) . ()] [(@x)xc ()]
i j=19% Y] & R

Since h and k are arbitrary, a natural temptation of raising this equality to
the function level isjustified. However, we cannot do it directly, since

(), ()] [(ax; ), (k)] (L(ebx ) ]+ (%) ), JKLKG).
To overpass this difficulty, we replace the usual product of functions
(¢ - w)(hK) = [p(h,K)]-[w (h k)]
by the so called tensor product of functions, which takes the values
(@ ®y)(h,K) =[p(N)]-[w (K)].
Consequently, the second order differential at x, takesthe form

P 52 f
d*f, = (%0) - L(dx ) x, [®[(dx;), |-
o i,jzilaxiayj [ XO] [ JXO]
Again, because X, is arbitrary, we may briefly write
p A2
df= ) ot dx; ® dx; .
i,jzlﬁxian

Beside this rigorous way of writing the second order differential, used in
[CI], [PM], etc., there are books where we still find the “simpler” forms
2 P 52f
A2 = > (%) [(@x)x, | l(0x))x, ]
|

219%0Y |

respectively
P 52f

dr= Y

210X 0X;

3) Based on multi-linear forms we obtain similar results for higher order
differentials. More exactly, if fisafunction of class C", then its differential
of order n takes the symbolic form
P onf
d"f = >
iy i =10%, 0% 0%
For the sake of simplicity, we may accept to write
P onf
d"f = >
i —10%, 0%, .0%
but the exact meaning of this formula needs a special explanation.

dg, ®dx, ®..®dx .

dx dx_...dx;

n
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§ IV.3. Functions of several real variables

Another important topic of the analysis of a real function of severa
variables concerns the Taylor’s formula, which is of great use in the study
of extrema. We will deduce this formula from the similar one, expressed
for rea functions of a single real variable, previoudy presented at 11.3.24.
First, we reformulate this result in the following convenient form:

3.18. Theorem. Let g: | >R be a function of class C™* on the interval
IR, and let us fix Xpel. For every Xel there exists 6 (depending on x)
between X, and X, such that

1 1
90) = gl%) + gy, (x=x0) + - d gy (X—Xg,X=Xg) + ... +

£ 20, (X Xgrr X X0) + 2 0" (X X, X X0).
(n+1)! +1)
n times (n+1) times
We recall that, for shortness, we frequently use the notation x —x = h, and
d"fy, () = d"E (07) = A" (x-x0)".
ntimes
Before formulating the similar result in R”, we recall that by interval of
end-points X; and X, in this space we understand the set
[X1, %] ={x=(@0-1t)x +tx, € R°: t[0,1]}.
Now we can show that the Taylor’s formula keeps the same form for rea
functions of several real variables:
3.19. Theorem. If f: AR is a function of class C™* on the open and
convex set AcRP, and xy €A is fixed, then to each xe A there corresponds

some & €[Xo, X] such that
F(%) =1 (x0) + %dfxo(x—xO) b 2 A2 (x-xg)? o+

n+1

1 n n
8 ()" s
As before, thisis caled Taylor’s formula of the function f around x,, with
the remainder (i.e. the last term) in Lagrange’s form.
Proof. Let usintroduce the auxiliary function g: [0, 1] - R, defined by
g =f((1-t)x+tx).
This function is well defined because A is convex, hence [Xy, Xl < A holds
for every xe A. From the hypothesisit follows that g is n+ 1 times derivable
on [0, 1], and according to the above theorem 3. 18 the formula

g1)=90)+ X = Ly 1 g
J—]_J ( )

holds for some 6 <(0, 1). If we note Xo = (x°, ..., xpo), X= (Xg ..., Xp), and
we calcul ate the derivatives as for composed functions, then we obtain
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Chapter IV. Differentiability

9(0) = f (x)
p
0’0 = > (xo)(x; —x9)= dfy (x—X0)
210X
'O = 3 1 ()06 - x| —x0)= d2f, (x— o)
i,j:laxiaxj 0\ | ] ] Xo
g"(0) = Zpl an—f(><o)(>q —x2) (5 =) = d"f, (x—xo)".
il,..,inzlaxil'"axin 1 Iy n [ 0

Similarly,for E=(1—- 0)x+ 60X e [X,X], it follows

g(n+l)(€) — dI‘H-]..I:§ (X_ Xo)n+1.
To accomplish the proof it is sufficient to see that g(1) = f(x). &

In order for us to study the extreme values of area function of severd
variables we shall precise some terms;
3.20. Definition. Let f: A—R be an arbitrary function defined on the open

set AcRP. The point X, €A is called alocal maximum of f iff there exists a

neighborhood V of Xy, Vc A, such that for all xeV we have
f(xX) —f(X)<O.
Dually, the local minimum is defined by the converse inequality
f(X) —f(x)>0.
The loca maximum and the loca minimum points of f are called
extremum (extreme) points of f.
If al the partial derivatives of f arevoid at Xg , i.€.

of .
—(X)=0,j=1,...,p,

an

then we say that X, is a stationary point of f .
Now, we can formulate necessary conditions for extremes:

3.21. Theorem. (Fermat) Let us consider that f: AR, where AcRP is an
open set, has all the partial derivatives at Xy € A. If Xg is an extreme of f then
Xo IS astationary point of f.
Proof. Let r >0 be such that SX, r) < A and for al xeSX, , r) the
difference f (x) — f (Xo) has a constant sign. Let {e,, ..., &} denote the
canonical base of the linear space RP. For eachj =1, ..., p we define the
functiongj: (—r,+r) >R by

GO =fo+te).
Obviousdly, t, = 0 is an extreme point of g; for eachj =1, ..., p. In addition,
g; isderivable at t, = 0, and its derivative equals
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§ IV.3. Functions of several real variables

dg; of
—(0) =—(xp)-
& O= 5 00
Applying the Fermat’ s theorem, for each g;, wherej =1, ..., p, we obtain
g';(0) = 0, hence x, is a stationary point of f. >

3.22. Remarks. @) In order to find the local extreme points of a derivable
function we primarily determine the stationary points by solving the
system:

a o
6X1

ot o,
6xp

However, we shall carefully continue the investigation because not all
stationary points are extremes. For example, the function f : R R, of

vauesf(x, y) = X* —y?, isstationary at the origin (0, 0), i..e.

" 001-2 (00—
&(0’0) - ay (010) - 01

but the difference f (X, y) —f (0, 0) changes its sign on any neighborhood of
this point. In other words, we need sufficient conditions to establish which
stationary point is extreme and which is not.
b) The sufficient conditions for extreme points will be based on the study
of the second order differential. In fact, according to the Fermat’s theorem,
since df,_= 0, the increment of f takes the form
f(X) —f (%) = dFz (X — Xo, X —X0) -

More than this, the second order differentia is calculated in a particular
case h = x — xo = k, when it reduces to a quadratic form (see § 11.4). We
recall that, generally speaking, ¢ : R°— R is named quadratic formiff there

exists a bilinear symmetric (and continuous) function @: R° x R R,
such that the equality

@ (X) =D (X, X)
holds at each xeR" .

3.23. Theorem. Let f: AR be afunction of class C.? (A), where A ¢ RP

Is an open and connected set, and let X, < A be a stationary point of f. If the
quadratic form ¢ : R’ - R, defined by

¢ (h) = d*f, (h,h)

is positively (negatively) defined, then f has alocal minimum (respectively
maximum) at the point X .
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Chapter IV. Differentiability

Proof. Let us consider that ¢ is positively defined. Then, there exists m>0

such that ¢ (X —Xg) = m || X —Xo || for al xeRP. On the other hand, from the
Taylor' sformulafor n =1, at the stationary point X, , we deduce

fO) —T(x0) =

18 6%

1.2
=—d“fs(X—Xg,X—Xg) ==
20" e (XXX =%0) ziélaxiaxj

€)% =X )(xj —xT) =

— 47, (X=X, X X0) +

p 2 2
Y@= (00 0 X0 =),

If we note the last sum by « (X), then the above equality becomes
f(0—f00) =3 @ (x—x) + (9.

The continuity of the second order derivatives of f a Xy leadsto

[im ﬂ:o

% x- x|
Now, let r > 0 be chosen such that at each xe S(x, ') we have

a(x) +m>0

2
[x=x[" 2
Consequently, at each x in this neighborhood, the inequality

f‘x"”x‘”[% “‘X)z]-iix—xO||zzo,
[x = x|

I.e. Xg iIsaminimum point of f.
Similarly, we discuss the case of a maximum. %

3.24. Corollary. Inthecase p = 2, let f: AR be of class C,%(A), and let
(X0 » Yo) be astationary point of f. If we note

0% f 02 f 02 f 02 f ’
. (X0, ¥o) and 6 P (%0, Yo) Y (%0, Yo) any(xo,YO)} :
then, according to the above tests of positivity (negativity), we distinguish
the following possibilities:

1. ifa>0and d > 0, then f has aminimum at X

2. ifa< 0andé >0, then f hasamaximum at X

3. if 6 <0, then xg is no extreme point of f.
3.25. Remark. There are situations when we are not able to establish the
nature of a stationary point by using the results from above. For functions
of two variables, we mention the following such cases:
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§ IV.3. Functions of several real variables

a) 6 = 0in the previous corollary. We must directly study the sign of the
difference f (x) —f (Xo).

b) d? fX0 = 0%,(Rp R)" The investigation of the higher order differentialsis
necessary to obtain information about f (X) — f (Xo).

c) f: KsR, where KcRP is a compact set. If f is continuous, then f is
bounded and the extreme values are effectively reached at some points,

but it is possible these pointsto bein K\ K =FrK.
Practically, in each case may occur more situations, as in the following:
3.26. Example. Let us study the extreme values of the function f: R? HR,

f(xy) =X’y (6—x-Y).
We obtain the stationary points by solving the system

2—f(x, y) 518x2y2 — 4x3y2 — 3x2y3 =0
X

%(x, y) 512x3y — 2x4y — 3x3y2 =0 .

The stationary points have one of the forms:

@ (X1, y1) =(3,2); (b) (%, 0), (V)% eR;or(c) (0,¥0), (V) YoeR.
By evauating the second order derivatives in these cases, we obtain the
following Hessean matrices:

~144 -108
@ HIG, 2)_[—108 —l62j
By H (. 0) = - °
(b) H f (%, )—{0 2X8(6_X0)}
0 0
(©) Hf(O,Yo)—(O Oj-

In case (a), following the Sylvester’ s test, we evaluate a = — 144 < 0, and
§=2%.3°>0, hence (x¢, y1) = (3, 2) isalocal maximum.

The case (b) contains the following sub-cases:

(b1) % =0,

(b2) % =6,

(bs) o €(0, 6), and

(bs) Xo € (=20, O) U (6, ).

In the sub-case (b;) the above techniques are useless because all partia
derivatives are null at (0, 0) up to the 5" order. In this situation, we have to
find other ways to study the sign of the difference f (x, y) — (0, 0). Because
in “small” neighborhoods of the origin we have 6 —x —y > 0, we deduce

sign [f (x, y) = f (0, 0)] = sign >XCy* (6 —x —V)] = sign x .
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Chapter IV. Differentiability

This shows that f (x, y) —f (0, 0) changes its sign in any neighborhood of
(0, 0), since x does. Consequently, (0, 0) is not an extreme point of f.
We may analyze the sub-case (b,) by using the third differential, whichis
d*f 6,0 (X—6, )’ = — 36" (x—6) [y’ + (x— 6)7] .
Obviously, d*f 6,0) Changes its sign in any neighborhood of (6, 0). Because
sign [f (x, y) —f(6, 0)] = sign df ¢, o) (x—6, )",
it followsthat (6, 0) is not an extreme point of f.
We may reduce the analysis of the sub-cases (bs) and (b,) to the study of
the second order differential, since

f(4Y) (0, 0) = S e (x—30) =536 &) ¥,

where ¢ is laying between xo and x. Consequently, if X, (0, 6), then there
exists a neighborhood of (Xy, 0) where we have f (x, y) —f (X, 0) >0, with
equality at that point only, hence each point of the form (X, 0) is a local
minimum of f. Similarly, if Xpe (— o0, 0) U (6, »), then each point (X, 0) isa
local maximum of f.

In case (c), theincrement of f takes the form:

1
f(x, 1) =0, y0) = -0 0,y (Y = o) +-

Because d*fg (X y—Yo)®=6Y5(6- Yo)-x°, we have to distinguish
the following sub-cases:
(C) Yo=0,
(C2) Yo = 6, and
(Cg) Yo eR\ {0, 6} .

Sub-case (c;) coincides with (b,). The sub-cases (c,) and (b,) are similar.
In fact, from the equalities

sign [f (x, y) = (0, 6)] = sign [X’y* (6 —x — )] = sign [x(6 —x -]},

it follows that f (x, y) — f (0, 6) changes its sign on any neighborhood of the
point (0, 6). Consequently, (0O, 6) is not an extreme point of f.

In the sub-case (c3), we have a3 fo, y,) %0, but because of x°, it does not

keep a constant sign on a neighborhood of (0, y,). So we conclude that
these points are not extremes of f .
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§ IV.3. Functions of several real variables

PROBLEMSS&IV.3.

1. Calculate the Jacobians of the functionsf , g : A—R? where Ais an open
set in [0, ) x R?, and the values of these functions are
f(p, 0, p) = (p sin O cos ¢, p sin 0 sin @, p cos 0)

_ _ g(p, 0, Z). = (p cosg, p sin ¢, 2). _ |
Hint. Write the Jacobi’s matrixes, then evaluate the determinants (as in

definition 2.17). Det (Jf (o, 6, ) = p2sin 0: Det (3g(p, ¢, 2) = p .

2. Show that the partia derivatives of the function f: R* R, of values

f(x,y)= {(szz)gn(xzwz)llz it (xy) = (00)
0

if (x,y) = (0,0)
are discontinuous a (0, 0), but f is differentiable at this point.
Hint. At (O, 0) we have

x°sinl -0
—(00)—I|m¢=0,
x—0
and otherwise
q(x,y):2xsin 1 X cos 1 :
X \/x2+y2 \/x2+y2 /x2+y2

To see the discontinuity of this derivative at (O O) consider particular

sequences, or anayze Iim (xO)— lim 2xsm———cos
x—0 OX x—0 X))

Similar results concern a . However, f isdifferentiable at (0, 0), and

oy
. | T(hy,hy) - 1(0,0) -
df(0,0) :9%(R2,R) ,since lim | 9

=0.
In|~0 h

3. Let the function f: R* >R, be defined by

fxy) = [+ YDZSn0E 4y HE i (xy) = (00
| 0 if (x,y) = (0,0) .
Show that:

a) This function is two times differentiable at (0,0), but its second order
partia derivatives are not continuous at this point, and

2 2
b) The equality ot = ot holds on the entire R? (without using the
oxoy 6y X

Schwarz' theorem 3.10).
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Chapter IV. Differentiability

Hint. If we note p =+/x2 + y? , then the first order partial derivatives are

o |axp?sint-xpcos™ it (x.y) % (0,0
—(Xy)= p p

0 if (x,y)=(0,0)
o |ayp?sint—ypoost it (x.y) % (0,0)
—((Xy)= P P

0 it (x.y) =(00) .

These derivatives are everywhere continuous, hence f is differentiable. In
particular, df g g) = 9%(}128 R)" The second order partial derivatives are not

continuous at (0,0), but
ldfy — o~ 0,2 gy [l _ 1 G

Il Al e, (M

‘("h hy) - k1+*(hl hy) - ko

g K
l
U () + (hl,hz)}:
uhu
1 2 1 1
= —-||4hy|h|"sin— hlhcos +|4h,|h|~ sin— — h,[h|cos—: }
| u{ I singy =i I siny ~ elhloosie
_ b+ ol s L —cos L
= (vl dlRlsingey = cospl 2

Consequently, f is two times differentiable at (0, 0), and at each h eR?
we have d? f0,00(h) = 0:%,(R2,R), ie d? fo,0(M(k)=0 atal h, k cR?.

4. Using the fact that grad f (Xo) || n, where n is the normal to the leve
surface Sg(y ), @ X , determine the components of n for a surface of

explicit equation z= ¢ (x, y) in R3.
Hint. Consider f(x, Y, 2) = @ (X, y) — z, SO that

of of o op
rad f (X, , = | = = 2 —| Z2(x9,Vn), —=(Xn, Vo), —11.
g (%o, Yo, 20) = (a v 62]% ) ( 8)( (X0, Yo) ay(><o Yo) ]

Using the Monge' s notation p = g—w,q= %p it followsthat n|| (p, g, — 1).
X
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§ IV.3. Functions of several real variables

5. Calculate the derivative of the function f : R® R, of values
f(x Y, 2) =X+ 2y°+ 37

at thepoint (2, 1, 1), in the direction of the unit vector € = % :
_(XO Yo, Z) = df(x y..2,)(€) = <(grad f)(xg,¥0,20), €> .

6. In what directions €, function f(x,y) = ¥/ xy2 has derivatives at (0, 0)?
Hint. Function f is not differentiable at (0,0), so we have to apply the very
definition of the derivativein adirection. If € = i cosa + | sin a, then

—(OO) lim f(tCOSa,tSina)_“mil/t?’COSaSinza

t—0 t t—0 t

This limit exists only for a = k% k=0,1,2,3.

7. Find the unit vector €, which is tangent to the plane curve of implicit

143

equation x*+ y* — 2x = 0, at the point (57] . Evaluate the derivative of

the function f (x, y) = arctg Y at that point, in the direction of €.
X

Hint. Use geometric interpretations, or derive in the explicit equation of the
curve, y = ++/2x— x? ,tofind &. Differentiate f at that point.

8. Let us consider the function f (x, y) = x> + xy* and the point a = (1, 2).
Calculate the partial derivatives of first and second order, and write the first
and second order differentials of f at a. Find the derivative of f a a in the

direction € = (cos a, sin «). In what sense could we speak of a second
order derivative of f at ain the fixed direction € ?

Hint. The differentials are df; 5 (h,k) = ﬂ(1,2) h+ %(1,2) -k = 7h + 4k,

2 2 2
and d*fe o (h, k)_ﬂ(lz) h? + 2%(1,2) hk + ny (1,2)-k?, hence

d?fi15 (h,k) =6h* +8hk + 2k°. If wefix &, then E (x, y) isdefined on a
(S]

neighborhood of a, where it is differentiable. Its derivative in the direction
e playsthe role of the second order derivative of fin thisdirection.
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y

9. Show that the functions of values u(x, y) = arctg = and v(x, y) = In Fl
X

wherer = \/(x— a)2 +(y— b)2 , are harmonic where defined.
2 2
Hint. u and v satisfy the Laplace’' s equation a—f + a—f =0.
OX oy

10. We note u(t, X) = A sin(cAr + ) sin Ax and v = ¢ (X — ct) + w (X + ct),
where A, A, u, ¢ are constants, and ¢ , w are arbitrary functions of class C* .
Show that u and v satisfy the D’ Alembert equation of the oscillating string.
. , , . 108%f 0%
Hint. The D’ Alembert’s equation is I B R 0.
c ot OX

11. Write the Taylor polynomial of the n" degree for f (x, y) = &Y at the
point (X, Yo) = (1, —1). What happens when n — oo ? What should mean

n

d'z= [dxiqL dyi} z?
OX oy

Hint. Note x + y = t and observe that the Taylor’s series of e ' is absolutely

and amost uniformly convergent to this function. The symbolic formula

describes the higher order differential as aformally expanded binomial.

12. Let usnoter = /x? + y2 and let n be the normal to the circle of center

{e)_d)
(0, 0) and radius r. Show that 2 = "/ 1 414 sketch the vector

on a2’

fidd grad % on R\ {0}

. 1 :
Hint. The vectorsn, r, and grad = are collinear.
r

13. Using the Hessean matrix, calculate the second order differential of the
function f(x, y) = € at acurrent point (Xo, Yo) € R%

14. Calculate the second order derivatives of u(x, y) = f (6¢ + y?, X* — V2, Xy),
where f is afunction of class C? on R Express d*f as a differentia of df in

the case of f(u, v, W) = u— 2V + 3ww.
Hint. d=0 only if x is an independent variable!
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15. Using Taylor’s formulas up to the second order terms, approximate
3/0.98, (0.95)*", cos 1°, €*! sin 1°. Give geometrical interpretation to the
results, as quadratic approximations.

Hint. Use Taylor’s formulas for one and two variables.

16. Test the following function for an extremum: z= x*+ 3xy”— 15x — 12y.
Solution. (2, 1) isalocal minimum, and (-2, —1) isaloca maximum, but at
the stationary points (1, 2) and (-1, —2) there is no extremum.

17. Break up a positive number a into three nonnegative numbers so that
their product be the greatest possible.

Hint. If we denote the three numbers by x, y and a — x —y, then we are led
to find the maximum of the function f (x, y) = xy(a — X —y) in the triangle
x>0, y>0 and x+ y<a. The unique stationary point is (a/3, a/3). The second
order differential showsthat it isindeed a maximum point.

18. Test the following functions for points of maximum and minimum:
@f(y)=x+xy+y —2x-y
(b) g(x, y) = (€ + y) e )

@ h(xy) = ==Y

1+Xx°+ y2
Solutions. (a) f takes the minimum value —1 at the point (1,0).

(b) Grmin = 0 &t (0, 0) and Gumex = 1 athe points of thecircle x* + y* = 1;
e
(€) hmex = +/3 at (1, -1).

19. Show that the function f (x, y) = (1 + €) cosy — x € has infinite many
points of maximum but no minimum.

Hint. Find the stationary points, and study the higher order differentials at
these points.

20. Find the increment of the function f (x, y) = X*— 2y* + 3xy when passing
from (1, 2) to (1 + h, 2 + k). Determine all functions of class C* on R? for

which thisincrement is apolynomial in h and k.
Hint. We have d* f(x,.y,) =0- From d'f = 0 on A, we deduce d™*f = const.,

hence f must be a polynomial in x, y. Generally speaking, the polynomial
functions are characterized by null differentials of higher orders.
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Until now we have studied only explicit functions, for which it is
explicitly indicated what operations on the variables lead to the value of the
function. The typical notation wasy = f (X; , ..., X,). However, we may
express the dependence of y on the variables x; up to x, by a condition of
the form F(xy, ..., X,; ¥) =0, where making y = f (X, ..., X,) explicit is
either impossible, or non-convenient (e.g. non-unique, too complicated,
useless, etc.). The am of this section is to clarify how to obtain the explicit
functions (Theorems 4.3 and 4.6 below), and to deduce several theoretica
and practical consequences of this result, concerning the loca inversion,
smooth transformations, and conditional extrema.

4.1. Example. The equation of the unit circle in the plane, X% + y* = 1,
establishes a dependence of y on x, but this curve cannot be the graph of a
function y = f (x), because to each xe (-1, +1) there correspond two vaues
of y. However, excepting the points (-1, 0) and (1, 0), for each (Xo, Yo)
belonging to the circle there exists a neighborhood V € 9 (%o, Yo), such that
the arc of the circle, which is contained in V, actually is the graph of some

explicit function, namely y= 1- X2, or y=—+1- X2 .

Our purpose is to generalize this case, but primarily we have to precise
some notions we deal with.
4.2. Definition. Let D<R? be an open set, and let F: D —» R be a function.
We note by D, = P, (D) the x-projection of D and we choose Ac D, . Each
function f : A —»R, which verifies the equation F(x, y) = 0 , when we
replacey = f(x), i.e. F(x, f (X)) = 0 on A, iscalled solution of this equation.
If this solution is unique, we say that f is implicitly defined by the equation
F(x,y) =0, or, in short, fisan implicit function (of one variable).
4.3. Theorem. Let us consider an open set DcR?, apoint (X, Vo) D, and a
function F: D —R. If the following conditions hold
1) F(X,Yo) =0,
2) Fisof class C' on aneighborhood W of (o, Vo), and

oF
3) — (%o, Yo) # O, then
oy

(8) Thereexist Ue 7(x0), Ve 7(¥o), and f: U -V, which isthe unique
solution of the equation F (x, y) = 0, such that f (Xy) = Vo ;
(b) f e Cr'(U), and for every xe U we have

£/ =— [ZF(X, f (x))} / FF(X, f (x))} *)
X oy

(©) If F ¢ CK(W), thenfe CK (U), for all keN".
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Proof. (a) To make a choice, let us suppose that %(xo , Yo) > 0. Because

oF IS continuous on W, there exist a > 0 and b > 0 such that %: (x,y)>0

for al (X, y) which satisfy the inequalities | X — Xy | <aand |y —VYo | < b.
Consequently, the function y— F(X , y), defined on (yo — b, yo + b), is
strictly increasing. In particular, because the inequalities
Yo—b<Yo—e<Yo<Yo+e<yp+ Db
hold for any & < (0, b), it follows that
F(X, Yo —¢) <F(X, Y0 =0<F(Xo, Yo + &)

From the second hypothesis we deduce that the functions

X F(X, Yo —¢€)

X—=FX Yot &)
are continuous on (Xo — a, X + a), hence there exists ¢ < (0, a) such that

F(X Yo —€) <O<F(x, Yo+ ¢)

holds for al xe (X — &, Xo + 6). Using the third hypothesis in the sense that

%:(x, y) > 0 holds whenever (X, y) satisfy | X — Xy |<aand |y —VYo | < b, it

follows that the function y— F(X, y) is strictly increasing on [yo — €, Yo + €]
for each fixed xe (Xo— &, Xo + &). Being continuous on this interval, it has
the Darboux property, hence there exists a unique ye (Yo — &, Yo + €) such
that F(x, y) = 0. In brief, we have constructed the function
frU=(-6X%*3) >V=(Yo—& Yot &),
such that F(x, y =f (X)) = 0 holds at each xe V, i.e. F(x, f(X)) = Oisvalid on
the set U. Using the uniqueness of the function y = f (X), and the fact that
F(Xo, Yo) =0, it follows that f (xo) = Yo .
(b) Primarily we show that f is continuous on U. In fact, in the above
construction, 6 dependson ¢, and f (X) eV means |f(X) —yo | < &. If we
repeat this construction for another ¢’ > 0, then we find 6’ > 0 and function
fi:(x0—0 % +8) >(yo—¢', Yo+ &'), suchthat | fy(X) —yo | < &' holds
whenever | X — X, | < 8'. The uniqueness of f, and the equality of f and f; at
Xo, 1.6 F(Xo) = f1(Xo) = VYo, lead to f(X) = fy(X) at all X e (Xo— &', Xo + &').
Now, let us analyze the derivability of f at an arbitrary point X < U, where
f(xX)=y eV.If wewritethe Taylor formulaat (X, y) for n =0, then

F(x,y) ~F(X,y ) = 2—i(€,n)(x— X*)+%F(§,n)(y— v)

where (&, ) is lying between (X , y) and (X, y). In particular, if we replacey
by f(X), then at each xeU, x#X , we obtain

(z_l):((g,n)(X—x*)+%(§’n) f(X)— f(x*) -0.
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Chapter IV. Differentiability

Equivaently, this relation takes the form

oF
f0- () ox =
X—X* ﬁ .
ay(é,n)

Because f is continuous at X , if x tendsto X it follows that f (X) —f (X ),
E-X ,and n—y = f(X). Consequently, the derivability of f follows from

the continuity of (Z—F and % at (X, y), and the value of this derivativeis
X

OF , « *
?(X (X))
X
aF * * '
——(x, f(x))
ay *
In particular, this showsthat f ' is continuousat all X cU .
(c) Since keN’, we will use mathematical induction. Case k = 1 is just (b)
from above. Let us suppose that the property is valid for k = n. In order to
prove it for k = n + 1, it is sufficient to remark that from Fe C{{l(\/\/), it

follows ‘Z—F and % < CI (W). According to (*), we have f ' « C (U ), and
X

f/(x)=-

finaly fe CR(U). &

4.4. Remarks. (a) The above theorem remains valid if instead of xeR we
take X = (Xg,..., X%,) € RP for some p > 1, and the proof is similar. In this case
function f depends on p real variables, and for all j = 1, ..., p we have

oF
e aXj(x, F(x))

- oF '
J ay(x’ F(x))

(b) Another extension of theorem 4.3 refers to the number of conditions.
For example, the system

(**)

G(xy,2)=0
defines a vector implicit function of components
{y = (%)
z=9(x)
In fact, if z= h(x, y) is an explicit function defined by F = 0, i.e. this
eguation becomes F(X, y, h(x, y)) = O, then the second equation, which is
G(x, y, h(x,y)) = 0, yieldsy = f(x). Finally, g(x) = h(x, f(x)).

{F(x,y,z):O
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§ IV.4. Implicit functions

(c) Similarly to (a) and (b) from above, the system
F(x,y;u,v)=0
G(x y;u,v)=0
implicitly defines the functions
{u =f(xy)

V=9g(xy)
which can be considered a vector implicit function. To be more specific,
we introduce the following:
4.5. Definition. Let us consider a system of equations

FL (X000 Xp3 Yasees Ym) =0

Fon (Xt Xp5 Y150 Ym) =0
where the functions F; : DR are defined on the same open set D < RP™™
forali=1,.,m Letaso AcRR" beaset consisting of those X = (Xy , ..., Xp),
for which there exists y = (y1 ,..., Ym)eR™ such that (X, y)eD. A set of
functions {fy: A->R; k=1, ..., m} iscaled solution of the given system of

equationson A iff forall xeAandi =1, ..., n, wehave
Fi (X1, ..oy %o T1(X), ..., Tn(X)) = 0.

If the set of solutions is unique, we say f;, ..., f, are implicit functions
defined by the given system relative to the variables (y1, ..., Vi)

For brevity, instead of severa functions F, ,..., F, we may speak of a
single vector function F, of components F4,..., Fy,. Similarly, the functions
f1, ..., fn define a vector function f. Using these notations, we may extend
the implicit function theorem 4.3 to vector functions, namely:

4.6. Theorem. If at (Xo, Yo) €D (in the above terminology) we have:
1) F(X,Y0)=0(.e Fi(X,Y)=0fordli=1,..., m),
2) Fisof class C' on aneighborhood W of (o, Vo), and

3) A= D(F,...., Fry)

D(Y1:s Ym)

(@) ThereexistsU e 77(X) and aunique solution f: U —V of the equation
F =0, such that f (Xo) = Yo,

(b) fe Cﬂl'%m (U),andfordli=1,...,mandj=1, ..., p, we have

(X0, Yo) # O, then:

D(F,-- Fm)
afi _ D(y1,---,yi_1,Xj,Yi+1’---1ym) (***)
OX: D(F]_,aFm)

J

D(Y1s-r Yicts Vis Viddsees Ym)
() If Fe cﬂ‘;m (W) for some k e N, then fe cﬂ‘;{m (U) too.
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Chapter IV. Differentiability

Proof. (a) We reason by mathematical induction over m. The verification
step is contained in Theorem 4.3, where m = 1. In the second step we have
to show that for every m e N, from the hypothesis of validity up to m— 1 it
follows the validity for m.
Because A # O, there exists at least one non-null minor of order m— 1.
For simplicity, let it be
D(F,..., Fn_1)
D(Y1:1 Ym-1)
Since the theorem is supposed to be true for m— 1, the system

Fl(xl""’xp; yls'--s ym_l, ym) - O

(X0, Yo) #0.

Fr-1 (X0 Xp3 Ym0 Ym-1, Ym) =0
defines m— 1 implicit functionsy ,..., ym_1 in aneighborhood of (X, Yo)-
More exactly, if we note Xy = (xf,...,x?)), and yp = (yf,...,y%), then there
exist U’ € 7(x), V! =V xV4 x..xV! ¢ 7(yo), and m— 1 functions

Y1 =hy (X Ym) U/ x VI >V
Yo = Mo (X, Ym) :U/ xVi > V]

Ym-1= D1 (X Yim) .U’ eré _)Vr41—1
such that hy (Xg,y2) = yP for al k=1 m—1 . In addition, we have
F (6 Ym)se B2 (%, Yim), Ym) =0, Vi =1, m-1,
at each (X, ym) €U’ xV/ . Because hy, ..., hy_; are functions of class C*
on the neighborhood U’ x V.|, theiinitial system
RO Y1 Yimet: Ym) =0, i =1 m,
is equivalent (at least on U’ x\f xVJ x...xV/) to the system
Y1 =h (X Ym)
Y2 =ho (X, Ym)

Ym-1= hm—l(X’ ym)
Fm(x’ h]_(Xl ym),---a hm—]_(Xl ym), ym) = 0 .
Now, let us consider a helping function ¢ : U’ xV,) - R, of values

@ (X, Ym) =Fm O (% Yim)ees Dz (6 Ym) s Yim) -
It is easy to see that ¢ satisfies conditions 1) and 2) of theorem 4.3, so that

@ (X, Ym) = 0 implicitly definesy,, in aneighborhood of (Xg, yr%) :
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Hypothesis 3) of theorem 4.3 is also fulfilled, i.e. §—¢(xo,y%)¢0. In
m
fact, deriving in respect to y,,, we obtain the following system of conditions

O My s O it 0+ T

a)’1 a)’m 8Ym—l 8Ym aYm
oF . 0 oF . oh oF.
Tt M 05,y9) oo St Tt e 0 4 Tt g
oy1  OYnm Ym-1 OYm Ym
op 0y_0Fm oh 0 OFm  Ohm g 0y, OFm
— (X0 Ym)=— (X0, Ym) + .. + : (X0, Ym)+—
OYm " oy1 OYm " Ym-1 Ym " Ym
where the derivatives of F4, ..., F,, are evaluated at (Xo, Yo). The value of
the Jacobian D (FLFm) (X0, Yo) ispreserved if toits last column we add
D(Y1,+ Ym)
(column 1)- M (0 v0y + .+ (columnm—1) - Tn-1 5 0y
OYm Ym
According to the above formulas, we obtain
ok R OR
oY1 Mm-1  Ym
D(F,,... F : : :
(0= DE 1 m; (X0, Yo) = OFm-1 OFm_1 OFm (X0, Yo) =
Yares Ym oy Nm1  m
OFm  OFm  OFm
ayl aYm—l aYm
o o
—(X0,Y0) (X0, Yo) 0
a}’1 ) a}’m—l_
= |oF g Fin 1, -
(X0:Yo) -+ (X0, Yo) 0
(;9)/1 ag/m—l
Fm F op 0
—(X0,Yo) - (X0, Y0) —— (X0, Ym)
oy 0P Nma 0 Oy O

- D(Fl,...,Fm_l) a—qo .
D(y]_,..., ym_l) (XO’ yO) aym (XO’ ym) .

Consequently 8—(p(x0, y%) # 0, hence theorem 4.3 is working. This means
m

that there exist aneighborhood U xV,2 € 7 (g, y2) and afunction
fm:U —>Vr8
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Chapter IV. Differentiability

such that ¢(x, f,,(X))= 0 on U, and f,,(Xg) = yron. In addition, function f
belongs to the class CL (U), and its derivative is given by (*).

It is easy to see that theiinitia system (F; =0, Vi =1,m) isequivalent to
Y= (X Ym)
Y2 =ha(X, Ym)

Ym-1=hm-1(X, Ym)
Ym = fm(X)
onUxV, where V =V xV3 x..xV/ 1 xV8 e (yq).

If we note fy (X) = hy (X, fn (X)), ..., fna (X) = hy 1 (X, T (X)), then we may
concludethat f = (fy, ..., fn_1, ) : U > Visthe searched implicit function,
I.e. assertion (a) of the theorem is proved.

(b) If we derive relative to X in the equations F; (X, f1(X), ..., fn (X)) = 0,
where i =1, m, then we obtain the system

OF; +8Fi ofy ++£%

an ayl aXJ aym aXJ

The Cramer’ s rule furnishes the entire set of derivatives Si asin (***).
X.

i
(c) We reason by induction, like in the proof of theorem 4.3. &

=0, Vi=1m.

4.7. Remarks. (a) The above theorems assure the existence of the implicit
functions, but do not offer methods to construct them in practice.

(b) The formulas (*), (**) and (***) are useful in calculating the (partial)
derivatives of implicit functions, especialy when the explicit expressions
are not known. In particular, the formulas (***) follow by Cramer’srule.
(c) The study of the extreme points of implicit functions may be done
without getting their explicit form. For example, if y = f (X) is implicitly
defined by F(x, y) = 0, where x, ye R, the stationary points (where y’ = 0)
are given by the system:

-

F(x,y)=0

oF
—(x,y)=0
ax( )

%(x,y);to.

Sufficient conditions are expressed by the sign of y', which may be
obtained by deriving in (*) one more time.
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§ IV.4. Implicit functions

Similarly, if the function z=1f (X, y) isimplicitly defined by F(x, y, z2) = 0,
wherex, vy, z R, then the stationary points are the solutions of the system

F(Xy,2)=0

a—F(x, y,2)=0
OX

%(x,y,z):o

a—F(x,y,z);«to :
0z
The decision about extremes results from the study of sign (A), where
2
622‘622_ 0%z
ox? oy? | owoy |

To obtain the second order partial derivatives of z, which occur in A, we
do another derivation in formulas (***).

A=

There are three types of problems based on the implicit function theorems
like 4.3 and 4.6 from above, namely the conditional extrema, the change of
coordinates, and the functional dependence. In the sequel we analyze these
problems, in the mentioned order.

We start with a geometric example, which illustrates the strong practical
nature of the conditional extrema theory.

4.8. Example. Let us find the point P(Xo, Yo, Zo) € R®, which belongs to the
plane of equation x + y + z= 1, and has the smallest distance to the origin.

To solve the problem, we have to find the minimum of the function
2

f(X,y,2 = \/x2+y2 +Z
under the condition x + y + z= 1. Of course, we may reduce this problem
to a free extremum one if we replace z=1 - x -y in f and we study the
forthcoming function of two variables. This method works in the present
case because we can make the given restriction explicit. Therefore, we are
interested in more general methods, which concerns implicit restrictions.
Generally speaking, the problem may involve more than one restriction.
This is the case when we are looking for a point P, which has the smallest
distance to the origin, and belongs to the straight line

X+y+z=1

X—y+2z=0.
In this case, again, we can express y and z as functions of X, and reduce the
problem to that of afree minimum of afunction of asingle real variable x.
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Chapter IV. Differentiability

It is useful to remark that the number of conditions equals the number of
implicit functions, and it cannot exceed the total number of variables. More
exactly, we have to specify the terminology:

4.9. Definition. Let DcRP*™ be an open set, and let f:D — R be afunction

of class C* on D (also called objective function). The equations

gI(X11 Xp Yi,-. ,ym) O |_1 ., M
where g :D —»R are functlons of classC'on D foradli=1, .. m ae

called conditions (restrictions or coupling equations). For brewty, we note
X=Xty %), Y= (Y1,..., Ym) and
M={(x,y)eD:gi(x,y)=0fordli=1,.. m}.

The point (Xg, Yo)eM is called local extremum of f under the conditions
g = 0 iff there exists a neighborhood V of (Xo, Yo ), V<D such that the
increment f(x, y) —f (X0, Yo) hasaconstant signonV n M.

The following theorem reduces the problem of searching a conditioned
extremum to the similar problem without conditions, which is frequently
called unconditional (or free) extremum problem. It is easy to recognize the
idea suggested by the above examples, of making the restrictions explicit.
The explicit restrictions will work localy, in accordance to the implicit
function theorems.

4.10. Theorem. (Lagrange) Let (X, Yo) <M be aconditioned extremum of f
asin the above definition. If

D(91,-» Im)

D(Y1:-s Ym)
then there exists a set of numbers A4, ..., Ay €R, such that the same (Xo, Vo)
Is stationary point of the function

F:f+ilgl+ +/1mgm.
Proof. According to the implicit function theorem 4.6. from above, the
system of conditions g = 0, i = 1, ..., m, locally defines m implicit
functionsy; = f, (x), i = 1, ..., m, of class C*, such that f; (x,) = y;° holds for
ali=1, ..., m By deriving the relations g; (X, f; (X), ..., fn(X)) = 0 (on M),
wherei =1, ..., m, relativetox,j =1, ..., p, we obtain:

R 1| P
0Q); +Zag| ofg _0i=1
X (kX
On the other hand X, is a (free) extremum for f (x, fi(X), ..., fn(X)), henceit

(X0, Yo) %20,

., m.

IS stationary point too, i.e. ai(xo) =0 fordl =1, ..., p. Inother words,
X.
i

for each fixed je{1, ..., p}, the vector
af not.
( 1( X0):- ,am(xo)] = (Ug, Uy, -y Upy)
Xj
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represents a non-trivial solution of the homogeneous linear system of m+1
equations:

—(Xo Yo)Up + Z J (X0, Yo)Ux =0, i=1..m
oXj 19Yk
_(XO Yo)Uo + ZT(XO Yoy =
OX; k
Consequently, foral j =1, ..., p, we have
D(f’gl’---’gm) _
D(Xj, Y1, Ym)

This fact implies the existence of alinear combination between the lines of
this determinant, that is, there exist A4, ..., Ay € R such that

9|
—a X, (X0, Yo) + Iz‘il ox —(X0,Y¥0)=0
—(xOy)+Zl-—ag‘ (X0, Yo) =0 k=1,.m
oYk 0 3 oy 0 e

Because A4, ..., Ay @e uniquely determined by the above last m equations,
it follows that they make valid the former equation too, for al j =1, ..., p.
In other words, this means that (X, Yo ) IS a stationary (non-conditional)
pointfor F=f+ A g1+ ... + AnGQm . &>

4.11. Remarks. a) In practice, the above theorem is used in the sense that
we primarily have to find the solutions x;°, ..., X, Y1°,....¥m> 5 A% +ovs Am
of the system

oF )
—(x,y)=0, j=1...p

an

<—(X y) =0, k=1,..m
OYx

gi (X’y):Oa i=1,...,m .

In particular, it gives the stationary points of f under the given conditions.
The selection of the points of real extremum results from the study of the
sign of dZF(XO,yO), where we take into account that dx; , j = 1, ..., p, and
dy,, k=1, ..., m, arerelated by dg; (X0, Vo) =0,i =1, ..., m,i.e.
%91 —Ldxg + .. +%dx +8gi dy1+...+%dym:0, i=1,...m.
0% OXp M Ym
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Chapter IV. Differentiability

These facts are based on the remark that under the restrictions g; (X, y) = 0,
wehaveF = f, AF = Af, etc.
b) The above method is useless in the case when the points of extremum
belong to the boundary of the domain D, of the objective function f

(usually, D iscompact). In principle, we may treat this case as a problem
of conditional extremum, by adding new restrictions, namely the equations
of the boundary.

Another important application of the implicit function theorem concerns
the invertible functions of several variables. Roughly speaking, to invert
the function f : A—>R™, where AcRP, means to solve the vectorial equation

f(X) —y = Ognm, Or, more exactly, the system

f1(%,. Xp) = ¥1=0

Fn (X, Xp) = Ym=0.

If the differentiability is allowed, and p = m, then we naturally try to
realize the inversion by the help of theorem 4.6. In this respect, we present
the following definition, which introduces the specific terminology:

4.12. Definition. Let A be an open subset of RP, where p>1. Each function

T : A>RP is caled transformation of A, If T eCE{p (A), then we call it

smooth transformation of A. If T: A»B < RPisal:1 (oneto one) smooth

transformation of A onto B, and T~ ' is smooth on B, then it is named
diffeomor phism between A and B .
4.13. Theorem. (Local inversion) Let T : A»RP , where AcR is an open

set, be a smooth transformation of A, and let xoe A be fixed. If T, through its
componentsfy, ..., f, , satisfies the condition

D(f1,..., fp)
D(Xq,-s Xp)
then there exist some neighborhoods U € 7(Xy) and Ve 7(T(xo)), such that

T is adiffeomorphism between U and V.
Proof. It is sufficient to apply theorem 4.6 to the equation T(X) —y = Opnm.

The resulting implicit function obviously is T~*. Formula (***) shows that
T~ !isasmooth transformation of V . &>

(Xg) =0,

4.14. Corollary. In the conditions of the above theorem, if ¢4, ..., ¢, ae
the components of T~*, then

1
D(py,0p) D(fpmr Fp)
T(xg)) = | ——" P’ .
D(yl,...,yp)( (%)) {D(xl,...,xp) (Xo)}
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Proof. We have T 1o T =1, where 1 is the identity on U, and 13,(x0)| = 1.

According to formula (*) in theorem 1V.3.6, the Jacobi matrixes are related
by the equality

Jra.7 (%) =J71(T (X)) - I7(Xo) -
It remains to take the determinants in this formula. >

The above inversion theorem has a strong local character, which persists
in the case when the Jacobi matrix is different from zero on the entire A. It
is frequent in practice, as the following examples show:

4.15. Examples a) When we are drawing flat maps from a circle or sphere,
we usually realize projections like T in Fig.IV.4.1 from below. As a matter
of fact, T projects points X of a haf-circle only, namely which correspond
to anglesx e (-7 /2,+ n/2) at the center C. The action of T is completely

described by functionf: (—z/2,+ 7/2) >R, of valuesf(x) = /tg x = T(X).
Because of the ssmple form of f, we prefer to consider it as projection of
¢ on R, instead of T . In addition, we easily obtain the derivative
£(x) =

0052 X

A A

T(X)| = f(x) T+ 12

4 —n/2

Fig. IV.4.1

To conclude, we may consider that fisalocal diffeomorphism between ¢
and R. Anyway thereis no global diffeomorphism between them.
b) When we pass from Cartesian to polar coordinates in R?, then we realize
atransformation T : R?\ (0, 0)— R’, x [0, 2n), asin Fig.IV.4.2.

The transformation of aformulafrom (x, y) to (p, 6 ) reduces to replace x
and y according to the formulas that define T~*, namely

X = pCosO
y=psing .
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A A
P(x,y)
] ‘ T
i —
P/
0
0 X i
Fig.IV.4.2.

A direct calculus of the Jacobian leads to

cosd - psind
sind + pcoso
hence the local inversion theorem 4.13 is working only if p = 0. More than
this, because sin and cos are periodica functions, the formulas of T~* carry
the whole set {(p, 8+ 2k 7): keZ} to the same point (X, y) <R In other
terms, T can be reversed only from R, x [0, 2n), i.e. rotations around the
origin are not alowed in R? any more. If we remark that T is discontinuous

:I[)’

at points of R: (e.g. connectedness is not preserved, see Fig.l1V.4.2), then
the only chance for T to realize a diffeomorphism is obtained by removing

the half-line Rix {0} from its domain of definition. Consequently, T isa
diffeomorphism between the sets A = R*\ [R.x{0}] and B = Rix (O, 2n).

Because of its role in this construction, the half-line R x {0}, which has
been removed from R?, is called a cut of the plane. Cutting the plane shows
another feature of the local character of the inverse function theorem.

To work with local maps means to construct diffeomorphisms similar to
T in the example @) from above, combine them in some “atlas’, etc. This
technique is specific to the differential geometry of manifolds (see [TK],
[UC], etc.), where the local properties furnished by these maps represent
the “pieces’ of the global properties. However, in analysis we are interested
in doing global transformations and changing the coordinates on the entire
space, which usualy is the flat R . In this sense, we may place analysis

between the geometry on flat spaces, involving continuous transformations,
and that of manifolds, where differentiability holds locally.
To be more rigorous, we have to specify some terms:
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4.16. Definition. If AcRP is open, and T : A»RP is a diffeomorphism
between A and B = T(A), then T is called change of coordinates (variables).
Thevariables x, ,..., X, are called “ old” coordinates of X = (X ,..., X;) € A,
and the components of T at X, namely fi(x), ..., f,(X) are said to be the
“new” coordinates of x . If, in addition

D(f1,..., fp)
D(Xq,-s Xp)

at each xe A, then we say that T is aregular, or non-degenerate change of
coordinateson A.

The differential calculus, where only regular changes of coordinates are
applied, is based on the following simple consequence of theorem 4.6:
4.17. Corollary. Let T be a regular change of coordinates of A, for which
we note T(X) =y = (Y1, ..., Yp). Theinverse T™ = (¢, ..., @) coincides
with any local inverse of T, and at each xe A we have

-1
D(fy,emn, fp) (X)} |

D(xl,...,xp)

(xX)=0

D(g1.-9p) ~
D(Y1, Yp) (100 = {

Proof. The first assertion is a consequence of the uniqueness of the implicit
function (theorem 4.6). The second property is an immediate consequence
of corollary 4.14 applied at a current point xeA. &

In practice, we often have to derive composite functions, which involve
transformations of coordinates.
4.18. Example. Write the Laplace equation in polar coordinatesin R? .
2
In Cartesian coordinates, the Laplace equation is a—lzj + a—lzj =0. To
ox= oy
change the variables means to replace u(x, y) = v(p, 6), where
X = p Ccos6
y=psind
We calculate the partial derivatives of the composed function to obtain
ov_ou ox v dy
op OX Op 0Oy Op
ov_odu Ox ou oy

00 ox 90 oy 06

The system gives the first order partia derivatives of u. By another
derivation of the resulting formulas we obtain the second order partial
derivatives of u, such that the given equation becomes

a( ov) 1%
op\ Op

, p>0and 0 (0, 2n).
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The last application of the implicit function theorem, which we analyzein
this section, concerns the functiona dependence. Before giving the exact
definition and the theoretical results we consider some examples:

4.19. Examples. (a) The linear dependence of the functions f, : A->R,
wherek =1, ..., mand AcRP is an open set, means that
fn=Aifi+ .. +Anafna

for somei,,..., Anq €R, i.e. for al xe A we have

fm(X) = }ulfl (X) + ...+ im_]_ fm—l (X) .
(b) The three functions fi, f,, fs: R*> R, defined by fi(x, y, 2) = x+ y + Z,
f(X, ¥, 2) = xy + xz+ yzand f5(X, y, 2) = xX*+ Y* + Z, are connected by the
relation f,* — 2f, — f3= 0. In other words there exists a function Fe C,'(R°),
namely F(u, v, W) = u®— 2v —w, such that the equality

F(fl (X1 Y, Z)’ f2 (X’ Y, Z)’ f3(X’ Y, Z)) =0
holds identically on R3, Briefly, we note F(fy, f,, f3) = 0, and we remark that
this dependence is non-linear.
(c) We may formulate the above dependence of f,, f,, f3 in explicit form,
e.g. f; = > — 2f, . In this case f; = G(fy, f,), where G(u, v) = u*— 2v..
4.20. Definition. We say that the functions fy, ..., f,,: AR, where AcRP
IS an open set, are functionally dependent iff there exists a function F of
class C' in adomain of R™ such that F(f, (X), ..., fn (X)) = 0 a each xeA. In
the contrary case we say that fi, ..., f,, are functionally independent.

Alternatively, if we can put the dependence of one function, say f,,, in the
explicit form f, = G(fy, ..., fn— ), Where G is a function of class C' in a
domain of R™*, then we say that f,, functionally dependsonfy,..., f.1.

We start with a sufficient condition for independence:

4.21. Proposition. Let fy, ..., fne C:'(A), where AcR® is an open set, and

let m<p. If a some Xye A we have rank J(f f )(xo) =m, thenfy,..., T,

are functionally independent on a neighborhood of X, .
Proof. Let us suppose the contrary, i.e. for each Ve 7(xy) there exists a

function Fe c%m_l (V) of variables uy, .., Un4 such that at all xe V we have

fn(X) = F(f1 (%), ..., fna (X)).
Deriving f,, like a composite function, we obtain

(5 = 5O (14000 () ZE 0, =1
an ke 16Uk T m_l J
In particular, at X = Xo, where fi (Xo) = ul for aII k— 1, ..., m1, we have
T x) = 3 F 0ot ) T (), =1,
oX, = ouy Uz - oX, 0 o
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Because the numbers j—F ..., ud ;) areindependent of the values of
Uk

xforal j=1,2, ..., p, the above relation shows that in the Jacobian matrix

of f1, ..., fnrelativeto x ,..., X,, the last line is alinear combination of the

other lines, hence the rank of this matrix islessthan m. &>

4.22. Remark. The above proposition shows that if m functions f, ,..., f,
are functionally dependent on A, then the rank of the corresponding Jacobi
matrix is less than m, which equals the number of functions, at any xeA. In
practice, we frequently need information about the converse implication, in
order to establish the existence of a functional dependence (we stressed on
“existence” because finding the concrete dependence F istoo complicated).
In this respect we mention the following:

4.23. Theorem. Let ustakef, ,..., fn € Cx'(A), where AcRP is an open s,

and m<p. If there exists xo e A and Ve 77 (Xg) such that

holds at al xeV, thenr of the given functions are functionally independent.
The other m—r functions are functionally dependent on the former ones on
aneighborhood of xo.

Proof. To make a choice, let us suppose that

A= Ty g
D (X %)
According to the above proposition 4.20, the functions f; ,..., f, are

functionally independent on a neighborhood of X,. S0, it remains to show
that the other functionsf,. 4, ..., f,depend on f, ..., f; in aneighborhood of
Xo. In fact, we may remark that according to theorem 4.6, the system

fl(Xl,...,Xp) - yl = 0

fr (X Xp) = ¥y =0
has a unique solution
X1 = @1(Xp 110001 Xps Y100 V)

Xp = @r (Xei1000 Xps Yoo Yr )
in a neighborhood of the point (x;°, ..., X ; y2% ..., ¥;° ). Consequently, in
such aneighborhood, and for al j = 1, ..., r, the following equalities hold:

f] (¢1(Xr+1a---’xp; yl,---,yr), vy Oy (Xr+11---,xp; yl,---,yr), Xr+1,---,xp) _)/] = O .
Deriving these relations relativeto ., k=r + 1, ..., p, it follows that

rof . . of,
3 190 N g1 (1)
izlaXi an 8Xk
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Now, by replacing Xy,...,X infs, wheres>r , we obtain
fs(Xa s Xy Xet1y ooey Xg) =
= fs(@r(Xee1 oo Xo s Yauee s Yo)y ooy @Kot 1 sees Xoi Vioeey Vi) Xet 1y vy Xp) =
=Fs(X+1, oy X0 Y1 V1) -
The assertion of the theorem is proved if we show that Fs does not
depend on X+1,..., Xp. Aiming at this result we show that all the derivatives

oFs _ ofs | < dfs o, @

OXe  OX¢ S0% %
vanish on aneighborhood of X, forall s=r +1, ..., m,andk=r +1, ..., p.
In fact, the hypothesis concerning the rank of the Jacobian leads to
ofp ofy ofy| (o ofy 0
OXp  OX  OX¢| |0% OX

o, of of|=|of, Of 0 =0,
OX1  OX  OX¢| [O% OX

ofg ofg ofg| |ofg ofg OFg
0% - OX,  OXy 8x1m8xr OXi¢

where the second form of this determinant is obtained by using (1) and (2).

This means that A-%zo on a neighborhood of X, . Since A =0, we
Xk

obtain %:0, I.e. Fs does not depend on x, . Becauses=r +1, ..., mand
Xk

k=r+1, ..., parearbitrary, it follows that
fs(Xe,..., Xo) = Fs(fi(X), ..., fr (X)),
i.e fi1, ..., fndependonfy, ..., f; . &>
4.24. Corollary. The functionsf, ..., f,,: AR, where AcRR™ is an open
set (noticethat p = m!) are functionally dependent on A, if and only if
D(f1,.es i) (X)=0
D(Xq,-» Xm)

at any xe A.

No proof is necessary since this assertion is a direct consequence of
proposition 4.20 and theorem 4.22.

In practice, it is also useful to notice that m functions of p variables are
always dependent if m> p.
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PROBLEMS 81V 4.

1. Give geometrical interpretation to the construction realized in the proof
of theorem 4.3, on afigure corresponding to F(x, y) = xX*+ y*— 1

Hint. Compare to example 4.1. Intersect the paraboloid z = x*+ y*—1 with
planes of equations X = Xg andy = Y.

2

2. Evauate the derivatives % and % and find the extreme values of
X X

the function y, implicitly defined by (¢ + y?)®—3(0¢+ y?) +1=0.

Solution. y' = — g; y'=— ¢+ )y 2.

3. Find the derivatives az and g—f/ , and study the extreme values of the

dx
function z(x, y), which isimplicitly defined by x* — 2y*+ 37 —yz+ y = 0.
Hint. Either use the formula (**) in remark 4.4, or differentiate the given
equation. From 2x dx —4y dy + 6zdz—y dz—zdy + dy = 0 we deduce
2X N 1-4y-z

dz= dx dy.
y—6z y—6z
4. Find @@@@ ifu+ v=x+yandxu+ yv=1
OX oy oOx oy
Hint. Use theorem 4.6. Derive the given equations relative to x
ou ov
—+—=1
oX OX
ou ov
U+ Xx—+y—=0
OX OX
to obtain @,@.Similarly, we calculate @,@.
OX OX oy oy

Another method is based on the differentials of the given conditions
du+ dv=dx+ dy
xdu + udx + ydv + vdy =0,
which providedu and dv .

2
5. Calculate the derivative % (1L-2), where z(x, y) is implicitly defined
X

by the equation X*+ 2y°+ 322+ xy—z—9=0,and (1, -2) = 1.
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Chapter IV. Differentiability

6. The system
X2 + y2 —2722=0
2x3+y3—323:0

implicitly defines y and z as functions of x in a neighborhood of (1, 1, 1).
Caculatey’, z/,y"and 2" at x, = 1.

7. Show that if f(x,y,2) =0, then —- —-— =-1.

Hint. Expressthe partial derivativesby fy, fy and f, .

8. Show that if F (i,zjzo,then xZ iy _;
zZ z OX oy

9. Find the point of extreme ordinate on the curve x>+ 8y*— 6xy = 0.

10. Find the extreme values of the function z= z(x, y), implicitly defined by
x>+ y?+ Z—4z= 0, and give geometrical interpretation to the result.
Hint. The given condition is the equation of the sphere of center (0, 0, 2).

11. Find the points of extremum for the function f(x, y, 2) = xy + xz+ yzin
thedomain D ={(x,y, 2)eR* xyz=1,x>0,y>0,z> 0} .

Hint. The Lagrange function is F(X, y, 2) = xy + xz+ yz+ A(xyz—1). The
system oF :0,6F :0,6F =0,g=0givesx=1,y=1,z=1,1=-2.The
oX oy 0z

second order differential is d’F(1, 1, 1) = — (dxdy + dydz + dxdz), but from
dg(1, 1, 1) = 0 we obtain dz = — dx — dy. Replacing dz in d?F, we obtain
d’F(1, 1, 1) = dx® + dxdy + dy?, which is positively defined. Consequently,
f has aminimum at the point (1, 1, 1).

Another method consists in studying the Hessean of F(X, y, z(X, y)), where

zisexplicitly given by g =0, namely z= % :

12. Find the extreme values of the function

fi{x=(, ..., %)eR": x>0forali=1,....,n,n>1} > R,
of values f (X) = X;- X5 -...- X,, under the restriction x; + ... + X, = S where
Sisaconstant. Use the result to deduce that

X1+...+Xn
TZQ/Xl'XZ'---'Xn .
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Hint. Use the Lagrange function F(X) = X;-Xo«...- Xy — A+ ...+ X — )

n-1
to find (see the above problem) x, = % foral k=1,...,nand 4 :(gj :
Further, evaluate the second order differential

) S n-2 n S n-2 5 )
d f(Xo) :(H) 2 deide :(H) [(del) _dei ]

1=i<j
and because the restriction gives " dx = 0, we have d*f, y <0.

13. Determine the greatest and the smallest values attained by the explicit
function z=x3+ y*—3xy intheregion 0< x<2, —1<y<2.

Solution. The greatest value z = 13 is attained at the boundary point (2, -1).
The smallest value z = —2 istaken at both (1, 1), which is an internal point,
and at (0, —1), which belongs to the boundary.

14. Seek the extreme points of the function f(x, y) =x*+ y* —=3x—2y + 1
ontheset K ={(x, y)eR?: x*+ y* <1}.

Hint. The only stationary point is (g,l)g K. Besides the method of

Lagrange function containing the equation of Fr K , a geometric solution is
possible if we remark that f (X, y) involves the Euclidean distance between
(x, y) and the stationary point of f .

15. Let y = y(X) , xe R, , be asolution of the equation

2
axzd—;/+bxﬂ+cyzlnx.
ax ax
Write the equation of u = u(t), wherex = e, and y(e') = u(t).

Hint. Derive u as a composed function, i.e.
du_dy ox ., d%u_ dzy(%j2+dy d?x
dt

=—~.—, and —=—=
dt  dx dt dt2  dx? dx dt?

It remainsto replacey’ and y” in the given equation.

16. Let f, g, h e CR'(R). Find anumber ¢ <R such that the functions
ux v,z =f(ax+2y—2
V(X,y,2) =g(-x—-2y + 22
wW(X, Y, 2) =h(x+ 3y —22)
are functionally dependent, and write the respective dependence. Particular
case: f(t) =t2, g(t) =sint, and h(t) = e".
Hint. According to corollary 4.24, u, v, w are functionally dependent iff
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a 2 -1
_Duvw v y2lb1 2 2|t/ =0
D(xy,2) 1 3 _2

The case when f/ = 0 istrivial becauseiit leads to f (t) = ¢ = constant, and
this constant can be replaced in the other functions. If IcR be an interval

onwhich f' 20, g’ #0, h’! 0, then we can speak of f™, g™, h™ onf(l),
g(l), and respectively h(l). In this case A = 0 is assured by a = %, when
between the lines of A there exists the relation (geometrical interpretation!)
X+3y—2z= (%x+ 2y—2z)— %(—x—2y+ 27) .
Because %x +2y—z=f Hu(x, Y, 2)) and —x — 2y + 2z= g (V(X, Y, 2)), the
above (linear) relation takes the form
w= h(f ) -2 g7 W)

For the particularly mentioned functions, we may work on | = (0, E).
2

The dependence becomesw = exp (J/u — % arcsinv) .

17. Let us consider f, g, h e C,'(R), and define

u(x, y, Z)—f( ) V(X Y, 2) = 9( ) and w(x, y, 7) = h(—)

Show that u, v, w are functlonally dependent on adomain DgR3, and find

their dependence.
Hint. We may take the domain D = {(x, y, 2) eR®: x>y, y> 2z, wherein

addition ' (X=Y) + 0, g ( ) +0,andh’ (—) + 0. The functional
) A

relation follows from
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In this section we study the derivable complex functions, which depend
on one complex variable. The basic notions of derivative and differential
obey the genera rules of section 1V.2. Although they closely resemble the
corresponding notions for a real function, there are many specific features,
on which we stress by using special terms.

5.1. Definition. We say that functionf : D —C, where Dc C, isderivable

(in complex sense, or C-derivable) at apoint z; € D if there exists the limit

. not.
jim 1A= F@) "
-7, Z— 1
If s0, thislimit iscalled derivative of f at z,.
5.2. Examples. 1. The power function, f (z) = 2", where ne N*, is derivable

at every z, e C, and its derivative resembles that of areal power, namely

/ 270 nkok-l_ o on-l
f'(z5)= lim = lim Y 2"z =nzy .
757y L—Zy I9Zh_q
Because the genera method of introducing functions is based on power
series, we need rules of deriving in such series (see later 1V.5.13).
2. If areal function of acomplex variableisderivableat z, , thenf/ (z) is
necessarily null. In fact, let usnotez=z,+t,and { = zy + it , where te R,

and suppose that f is derivable at z,. Then there exist the limits

imf@=F@) "% F g iim HO- @) i Fy).

t—0 t _ t—0 It
Because both f(zy), f(z5) €R, and Rn{i R} ={0}, weobtainf’(z) =0.
To illustrate the great difference between the real and complex analysis,
we may compare particular real and complex functions. For example, the
real functionf : C—R, of valuesf(2) = Re?(2) + Im?(2), is derivable at the

point z, = 0 only, while the function ¢ : R?>> R, which takes the same

values ¢ (X, y) =X+ Yy, is differentiable on the whole plane.

3. Because the limit of a complex function reduces to the limits of the
real and imaginary parts, we may express the derivative of a complex
function of one real variable as a derivative of a vector function. In fact, to
each complex functionf : | > C, where Ic R, and f (t) = P(t) +i Q(t), there

corresponds a vector function F : | - R? of the same components P and Q,
e F(t) = SP(t), Q(t)). According to the above definition, the derivative of f
isf/(t)=P'(t) +i Q'(t), while F'(t) = (P’ (1), Q' (t)).

The geometric interpretations of F' in terms of tangent to a plane curve
remain valid in the case of .

245



Chapter IV. Differentiability

5.3. Remarks. (a) We remind that, differently from the rea case, to be the
domain of afunction, D shall be an open and connected set. Consequently,

Z, isaninterior point of D, hence the evaluation of f /(zo) involves alot of
directions and “ways’ to readlize z— z; (compare to the derivatives from

the left, and from the right, of a function depending on one real variable).
Whenever we intend to put forward the uniqueness of this limit in spite of
its infinitely many reductions to one-directional limits, we may use terms
of more historical connotation, derived from the French monogéne (aso
met in Romanian). However, to get the exact meaning of the limit in the
above definition, we have to recall its detailed formulation in terms of
neighborhoods, ¢ and &, etc. (see 88 1.4, 111.2, etc.).

(b) The connection between derivability and differentiability of a complex
function is similar to that of real functions. In fact, according to the general
definition of differentiability (see 8 IV 2), a complex functionf: D —»C,

where Dc C, is differentiable at a point z; € D if there exists alinear (and
continuous) function L, :C—>C such that

f(zg+h) - (z0)— Ly, (N)
m =0
h—0 h
Similarly to the case of areal function, the general form of such a linear
function is L, (h)=c-h, for some ceC. Consequently, f is differentiable

at 7, if and only if it is derivable at this point, and ¢ = f / (). For historic
reasons we may note L, =df, , df, (h)=f'(z)h, df = f'dz, etc. as for

real functions of area variable.

(c) The applications of the differential to the approximation theory are
also similar to the real case. More exactly, we obtain an approximate value
of f(zy+h) if wewrite the differentiability in the form

f(zg+h)= f(z0)+ f/(z)h.
5.4. Geometric interpretation. If the functionf : D - C, where DcC, is

derivable at the point z; € D, and f/(zo) #0, then locdly (i.e. in ‘small”
neighborhoods of z,) it realizes a dilation of factor ‘f’ (zo)‘ and arotation
of angle arg f / (zg) - Tojustify this interpretation, et us note the increments
h=Az and f(zy+h)- f(Z))=AZ, and write the approximation rule from

above in the form AZ = f/ (zg)-Az. The local character of this property
means that for every imposed error, we can find aradius 6 > 0, such that =

be accepted as equality whenever [AZ <& . If so, then |AZ| :‘f/(zo)‘-|Az|

and argAZ =arg f/ (zy) +argAz. It remainsto interpret |-| and arg.
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The derivative of f has strong connections with the partial derivatives of
thereal and imaginary partsP=Ref,and Q =Imf, first of al:
5.5. Theorem. If the functionf : D — C, where Dc C, is derivable at the

point Zg=Xg+iyge D, then P =Re f and Q = Im f , are derivable at the
point (Xg, Yg) € D , now considered in R?, and the following relations hold

oP Q
&(XO’YO)— oy (X0s Yo)

oP )
E(XOsyO)— P~ (X0 Yo) -

The abbreviation (C-R) comes from Cauchy and Riemann, who have
discovered and used these equations for the first time.

Proof. We may realize the limit from definition 5.1 in two particular ways,
not. not

namely I. h = Az=Ax,andll. h :'Az:iAy (asinthe figure below).

(C-R)

Ay=Imz

Fig. IV.5.1.

In the first case, the quotient H(z+ AAzz — 1(z) equals

P(xo +4x, o) = P(X, Yo)  ; QU0 + A%, ¥0) ~Q(%0, Yo) -

AX AX
while in the second one it becomes

P(X0, Yo +4Y) — P(Xo, Yo) . ; Q(*0, Yo + Ay) ~ Q(Xo, o)
i Ay i Ay '
Taking h— 0, the existence of f/(z,) implies the existence of the partial
derivatives of P and Q a (X, Yo ). In addition, the equality of the two
expressions of f/ (zg) , namely

oP e 0 . OP
200 o) 1 S2060,Y0) = 22 00,y0) -1 £ (%0, 30)
proves the Cauchy-Riemann relations. %
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5.6. Corollary. If thefunctionf=P +i Q: D —C, isderivable at the point
Zy = X +1yg € D < C, then its derivative is calculable by the formulas

t/(z0)= %;;(XO,yo)+4 %;%(x01y0)::§E2(XOsy0)‘4 P 30 ¥0) =

oy oy
0Q . 0Q oP . OP
= — (X0, Yo) +i — (X9, Yo) = — (X0, Yo) =1 — (X0, Yo) -
oy (X0, Yo) > (X0, Yo) ™ (X0, Yo) oy (X0, Yo)
These formulas appear in the proof of the above theorem.
Simple examples show that the C-R conditions do not imply derivability:

5.7. Example. Let usdefinef : C >Chbyf(2) =(1+1) ¢(2), where
1 if Rez-Imz=0
?(2)= {0 if Rez-Imz=0.

The Cauchy-Riemann conditions hold at zy = 0 because the real and
Imaginary parts of f constantly vanish on the axes. However, if we take the
increments along different directions of equations Ay = m Ax, then we see
that f is not derivable at the origin.

The following theorem gives an answer to the question “what should we
add to the Cauchy-Riemann conditions to assure derivability?’

5.8. Theorem. Let us consider afunctionf =P +i Q: D —C, and a point
Zo =X +1yoe D cC. If P and Q are differentiable at (Xg, Yg) and satisfy
the Cauchy-Riemann conditions, then f isderivable at z,.
Proof. We note h = (X—Xg,Y— Yg) , and we express the differentiability of
Pand Qby A(h) —» 0 and B(h) —» 0, where

h—0 h—0

‘P(x, )= P, Yo)-| (%0, Yo) (X~ X0) +ZS(X°’ Yo)(y - YO)}
A(h) = I _ ,
‘Q(X,Y)—Q(Xo,yO)— aaf(xo,yo)(x—xohaacy?(xo,yo)(y—yo) ‘
o= " B
Using the C-R conditions, we may write A and B by Z—I: and %—(3 only.
Because ||h| =|z—- zy|, we have
(2= 10)~| . 00.90)+1 52 00,30) |12
X X < A(h)+ B(h).
z- 7
Consequently, f isdifferentiable a (Xo, Yo). >
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5.9. Remarks. (i) We may replace the differentiability of P and Q in the
above theorem by harder conditions, e.g. by the continuity of their partial
derivatives (in accordance to theorem IV.3.5).

(if) Conversely to theorem 5.8, the differentiability of P and Q follows
from the derivability of f . In fact, both A(h) and B(h) are less than

f(2)- f(zo)—[g';(x@yo)ﬂ‘ZCX?(xO,yo)][z—zO]

z-7

In other terms, the derivability of f isequivalent to the differentiability of

P and Q, plus the Cauchy-Riemann conditions.
(iii) The form of the Cauchy-Riemann conditions, theorem 5.8, and other
results from above, is determined by the use of Cartesian coordinates in the
definition and target planes. More exactly, the correspondence Z = f () was
meant as z= x+iy—f>Z =X +iY,wheeX=P(x,y) and Y = Q(X, y). In
practice we sometimes meet representations of z and Z in other coordinates,
especially polar (see problem 5 at the end of the section).

So far we have studied derivability at a single point. Similarly to the real
analysis, thislocal property can be extended to aglobal one, which refersto
functions derivable at each point of adomain. The specific notion is:

5.10. Definition. We say that functionf : D —C, where Dc C, is globally
derivable on D (or simply derivable on D) iff it is 1:1 (i.e. univalent) and
derivable at each point of D. If so, we note the derivativeof f onD by f .

5.11. Remark. There are plenty of terms and variants of presenting the
global derivability. For example, the 1.1 condition is sometimes omitted,
but tacitly included in the hypothesis that the target space is C. Thisis the

case of the functions Qf , Ln, Arcsin, etc., which are not globally derivable

because they a multivalent, i.e. they take values in &? (C). Some authors
(frequently including Romanian) use French terms, e.g. “holomorphic” for
global derivability, “meromorphic” for a quotient of *“holomorphic”
functions, “entire” for functions derivable on the whole C, etc.

The analytic method of defining functions (see 8 11.4, etc.) turns out to be
very advantageous in the construction of globally derivable functions. First
of all we need information about the convergence of the derived series. If
we derive term by term in a power series, then we obtain another power
series, hence the problemisto correlate the two radiuses of convergence:

5.12. Lemma. If we derive term by term in a power series > a,z", then

the derived series, i.e. D na, 2" | has the same radius of convergence,
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not.
Proof. The essential caseis R= 1/w, where @ = lim Jl|a,| € (0,0). We
N—oo

not.
have to show that o' = Tim Nnlay| there exists, it belongs to (0,) too,

Nn—oo

and R= R/, where R’ = 1/’ . We recall that the superior limit means:
() v 3 such that [(V)n>ny = V]ay| <@ +¢], and

e>0 nyeN
() v 3 suchthat Mlay,|>w-¢ .
>0 meN
On the other hand, we know that lim ¥n =1, hence
n—oo
(I"Y v 3 such that [(V)n>n = Yn<1+¢], and
e>0 neN

(11"y wehave Ym>1at each meN\{0J}.

Because the above inequalities are essential for small ¢, we may restrain
£€(01), and fix anumber k such that o +1+ec<w+2<Kk. If suchan ¢is
given, then we find ny from (1), and n, from (1), which correspond to g/k,
and we note n* =max{ng,n} . From (1) and (I " we deduce that
(*) ¥ 3 such that [(V)n>n* = Ynay| < (@+£)1+£) <w+e].

e>0 n*eN

Similarly, multiplying the inequalities from (11) and (11"), we obtain

(I*) v 3 suchthat Wmlay| >w-¢ .
e>0 meN

The conditions (1*) and (11*) show that o’ exists, and o' = . &

5.13. Theorem. The sum of a power seriesis globally derivable on the disk
of convergence, and its derivative is obtained by deriving each term.

Proof. The claimed property is qualitative hence it does not depend on the
center of the power series. To simplify the formulas, we suppose that z,= 0.
Sincethecase R=0istrivia, we take R > 0 (see the figure below).

Almz

z+h

z

»

z,= 0O / Rez

Fig. IV.5.2.
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§ IV.5. Complex functions

Consequently, our object isthe functionf : D — C, where
D=50,R ={zeC: |z|<R}

isthe disk of convergence of apower series > a,z",and f(2)= > a,z".
n=0
Because each limit is unique, the values f (2) are uniquely determined, i.e.
function f isunivalent. It remains to prove the derivability on D.
If wefix zeD, andtake h =0 suchthat z+he D too, then we may write

f(z+h)-f(z) 12

5 = Zan[(z+ h)”—z”]: > aygn(h),
n=0 n=0

not. 1 2 2 1
where g,(h) = (z+h)" "+ (z+h)"“z+...+(z+h)Z"“+ 2" Itiseasy

to see that the function series Zangrl fulfils the hypotheses of a theorem

similar to 11.3.13, formulated for complex functions. More exactly, g, are
polynomials, hence continuous functions, the convergence of the series is
uniform in a neighborhood of z. Consequently, the limit h— 0 preserves

the above equality, where rI]im gn(h)=n z"! is immediate; the existence
—0
of the limit of the series > a,g,, showsthat f isderivableat z and

_ def . 0
lim 12+ =1(2) 7 t/(2)= > na, 2" L.
h—0 n=1

The convergence of the derived series follows from Lemma 5.12. &

5.14. Analytic prolongation. An important problem appears relative to the
domain of definition of a function depending on the used method. If we
define it by a power series, then the domain is a disk, but the general form
of the domain of definition is not circular. For example, the function
()=
1-z
iIsdefined on D = C \ {1}, while the analytic definition
2

f(2)=1+z+2°+..+ 2" +...
makes sense only in the disk D(0, 1) = {ze C:|Z <1}, where the geometric

series is convergent. For fairness we mention two extreme cases when this
difference disappears (see also problem 6, and other examples), namely:
1) R=o0, since we have accepted to interpret C asadisk, and

2) R< o, but f isnot definable outside the disk D(z, R).

It is easy to see that some developments of the same function around other
points, different from z,, may overpass the initial disk of convergence (see
Fig. IV.5.3). In the example from above, if we choose z; =i /2, then the
development around this point will be anew power series, namely
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. \n
1 ) 1 ~ 1 . 1 B 1 i Z—
-2 1-5-(z=3) 1-51-7 1-5,91-

2

N =N |—

This is a geometric series, which is convergent iff ‘z—i—z‘ < ‘1—%‘ _ % , and

has the same values as the former one in the common part of the domains.

A

A
o)

In general, we may repeat this process of “immediate”’ prolongation along
various sequences of points{z, z, z, ...} to extend theinitial function on
larger and larger domains. Without going into details (see specialized
treatises like [CG], [G-F], [SY], etc.), we mention some of the main terms:
5.15. Definition. By element of analytic function we understand a function

\

Fig. IV.5.3.

fo, whose values are the sum of a power series, i.e. fo(2)= > a,(z-z)".
n=0
Its domain of definition, Dy, isthe disk of convergence of this series, i.e.
Do =S(29,R) ={zeC:|z-7|< R}.
The power series of f, around apoint z € Dg\{z} iscaled (immediate)

prolongation of f,. The greatest domain D, to which f, can be extended by
al possible repeated prolongations is named domain of analyticity. The
resulting function f : D—C, is called analytic function generated by the

element of function fy.

Each point of D is said to be ordinary (or regular) point of f, while the
points of the frontier of D are named singular.

5.16. Remark. As aresult of iterated prolongations, we naturally recover
zones where the function has been previously defined. There is no guaranty
that the new power series takes the same values as the previous ones on
these zones. In practice, we always have to identify the case and distinguish
between univalent and multivalent functions.
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§ IV.5. Complex functions

One of the most rigorous ways to avoid the multivalence consists in
considering the domain of analyticity as a manifold with multiple leafs (or

branches). For example, the domain of the function Qf has n leafs, such

that each turn about the origin (which is the single common point of these
branches) leads us to the “next” leaf. Consequently, whenever we take a
point z € C, we have to specify theindex k (k =0, 1, ..., n 1) of the leaf
for which z belongs to. The corresponding value is the well known
2kzr . . argz+2kr
Vz )y =n {COS%+ISH—:|.
( )(k) \/ﬂ n n

Beside this complicated study of such manifolds (see [SL], [ST], [BN],
etc.), we can solve plenty of practical problems on another way, namely to
transform the multivalent function, which takes values in 9?(C), into more

univalent functions, which are defined on customary domains in C, and

take unique values. This method is based on the so-called “cuts’:
5.17. Definition. Let f: D— 97(C), where D c C, be amultivalent function.

If the point ¢ e D UFrD hasthe property that f is multivalent on arbitrary
neighborhood V € 7"(c), then it is caled critical point (or multivalent
singularity) of f.

Each restriction f | A A— C, where Ac D, which is continuous on A (and
self-evidently univalent, since it ranges in C), is named univalent branch
(or univalent determination) of f . If A is obtained by removing a curve C

fromD,i.ee A=D\ C, then C iscaled cut of D.

5.18. Examples. The most frequent multivalent functions are: Arg, Qf , Ln,

the complex power, and the inverse trigonometric functions. All of them
have the origin of the complex plane as acritical point. The half-line R_ is
customarily used asacut of D = C \ {0}. The effect of this cut application

is the elimination of the complete turns about the origin, which avoids the
possibility of passing from one branch to another.

Of course, the combined functions, which involve some of the smple
multivalent examples from above, have more complicated sets of critical
points. For example, the functionf: C\ {1, -1} — C, of values

f(2)= LnZ=2
z+1

has the critical pointsz; =1 and z,= —1. We may cut along two half-lines
Ci={z=xeR:x<-LTu{z=xeR:x>1.

The analysis of f shows that another possible cut is C, = [-1, 1], aswell as

many other curves of endpoints—1 and +1 (see problem 7 at the end).
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5.19. Classification of the singular points. During the first stage of the
analysis, we have to establish whether the singular point is
e |solated (inthe set of all singular points), or
e Non-isolated.
Further on, the isolated singular points can be
e Multivalent (i.e. critical), or
e Univalent.
Among univalent isolated singular points we distinguish
e Poles, and
e Essential singularities
More exactly, z, is apole of f if there is some peN*, for which there

exists lim (z—zy)P f (2), and it is finite. The smallest natural number with
z—12,

this property is caled order of the pole z,. In the contrary case, when there
IS no such anumber pe N*, we say that z, is an essential singular point.
A singular point can be non-isolated in the following cases:
e Itisan accumulation point of a sequence of singular points
e |t belongsto acurve consisting of singular points
e |tisadherent to aset of singular points, which has a positive area.
For example, z = 0 is univalent isolated singular point for the function
f(2) :%, and critical point (i.e. multivalent isolated) for g(z) =~/z. To be

more specific, zy= 0isapole of order p of the functions
1

=~ etc.
sinP z

(D=5, 2(2) =
Z

and essential singularity for the functions
v1(2) =exp(}/2), wo(2) =sin(y/ ), etc.
The same z,= 0 is non-isolated singular point for the function
1
h(z)=—,
(2 sinl

sinceit isthe limit of the sequence (nij , which consists of (isolated)
7T JneN*

singular points. A line of singular points appears when no prolongation is

available outside the disk of convergence, e.g. Zz”! in problem 6. The
n=0
examples of domains with positive area, which consist of singular points,
are much more complicated, and we will skip this topic here; however, we
mention that a remarkable contribution in this field is due to the Romanian
mathematician Dumitru Pompeiu (about 1905, see [SS], [CG], etc).
The above classification includes the point at infinity.
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Another mgjor topic in the theory of the derivable functions concerns the
properties of their real and imaginary parts. We obtain ssimpler formulation
of the main theorem if we ask D to be particularly connected:

5.20. Definition. We say that the domain D — R? is connected by segments

iIf there existsapoint Mg = (Xg, Yg) € D such that
[(X0, ¥o), (X, Yo)]l V(X ¥o), (X, ¥)] = D
holdsfor all M =(x,y) e D, where[ ., . ] denotes aline segment.
Alternatively, we may refer to the dual broken line

[(%0, Yo), (%0, V)] V[(%,Y), (X, V)],
or to concatenations of such curves.

A comparison to the line integral is advisable (see later § V1.3, where we

replace the broken lines by a single segment [Mq, M], and we say that D is
astar-like domain).
521. Theorem. Letf=P +i1 Q: D —C be afunction, for which the red
and imaginary parts have continuous partia derivatives of the second order,
.e. P,QeCﬁ(D). Iff=P+1Q:D —»Cisderivableon DcC, then P and
Q are harmonic functions on this domain, i.e. they fulfill the Laplace
equation AP =0, AQ =0, at each point (x,y)eD.

Conversely, if the function P : D — R is harmonic on the domain D R?,
which is connected by segments, then there exists a function f : D—>C,
derivable in the complex sense, suchthat P=Re f.

A similar property holds for Q .

Proof. If f is derivable, then according to Theorem 5.5, P and Q satisfy the
Cauchy-Riemann conditions. Since P,Qe CH%(D) , we may derive one
more time in these relations, and we obtain

0°P _07Q
y(xs Y) —@(X’ Y)
0°P Ae)
V(X’ Y) ——%(X’ Y)

at each (x,y)e D. The continuity of the mixed derivatives of Q assures
their equality (see the Schwarz’ Theorem IV.3.10), hence

not. 52 2
AP = a_z + 8_2’ =0.
ox= oy
Appropriate derivations in the C-R conditions |ead to AQ = 0.
Conversely, let us suppose that a harmonic functionP e C3 (D) is given,

and we have to point out a derivable function f , for which P = Re f . What
we need is Q = Im f , hence we start the proof by a constructive step, in
which we claim that the function Q : D — R, of values
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Qx, y)-—j (t Yo) dt +j —(xs)ds (*)

fulfils the requirements. F| rst of al, Qis correctly constructed since D is
connected by segments, and P has continuous partia derivatives. The main
part of the proof refersto the Cauchy Ri emann conditions, so we evauate

( Y)——E(X Yo) + I (xs)ds_

0P op,  [5Y
IO e s)ds——a( W)= x9)_ =
=—E(X,Y)-
The other derivativein (*) immediately gives
o=y,

According to theorem 1V .5.8, thefunctlon f=P+iQisderivable. <

5.22. Remarks. (i) Slight modifications of the above proof are necessary if
D is connected by other types of segments, or Q is the given function, and
P is the asked one. The key is a good adaptation of the formula (*), which
isexplained in Fig.1V.5.4 from below.

Ay=Imz
M(x, y)
S (x,9)
D (t. )
o—b i (X, 36)
Mo 0%+ %)
! >
0 X=Rez
Fig. IV.5.4.

In addition, we may formally obtain formula (*) by integrating dQ, i.e.

(x.y) (xy) 0Q . . 9Q
, = d = d =
Q(X y) J.(XOvyo (X0+Yo) aX 8y y =
(X,Y) 8P
d
(X0 Yo) 8y aX Y

where the integral is realized along the broken line, and the C-R conditions
are supposed to be valid.
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(if) Formula (*) is essential in practical problems. It allows finding Q up
to a constant. More exactly, the concrete computation in (*) produces three
types of terms, namely:

e Termsin (X, Y), which form Q(X, y);
o Termsin (X, Y) and (X, Yo), which must disappear;
e Termsin (X, Yo), which form Q(Xo, Vo) = constant.

We stress on the fact that the termsin (X, y) and (X, Yo ) must disappear,

and the final result in (*) takes theform

Ixap(t oyt + [ % (x.9)ds = Q0. )~ A6, 1)

In other terms, Q (and |mpI|C|tIy f ) are determined up to a constant, which
IS sometimes established using a condition of theform f(z)) = Z,.

(ii1) In more complicated problems, instead of P (respectively Q) we have
arelation satisfied by these functions. In this case it is very useful to know
many particular functions (see problems 8, 9, etc.).

(iv) In atypica problem, e.g. P is given and we find Q, we obtain the
solution, i.e. function f , in the form P(x, y) + 1 Q(X, y). Whenever we have
to write the answer asf (2), the following formal rule is recommended

f(2 =P(z, 0) +i Q(z 0).

(v) Formula (*) and the other results concerning the properties of P and Q
in a derivable function f = P + i Q strongly depend on the chosen type of
coordinates, namely Cartesian. Whenever a practical problem asks, we may
reconsider the same topic in other coordinates, and put the main ideas from
above in an appropriate formalism.

The geometric interpretation of the derivability at a point can be naturally
extended to the global derivability, in terms of particular transformations.
5.23. Definition. We say that the function T: D —>R?, where DcR?, isa
conformal transformation of D if it preserves the angles.

More exactly, the notion of angle refers to smooth curves, respectively to
the tangent vectors to such curves. To transform smooth curves into smooth
ones, we tacitly use the hypothesis T e C}%{z (D). The specific property isto
leave the size of the angle between corresponding curves unchanged.

We recall that the complex functions represent plane transformations.
5.24. Examples. We represent the elementary geometric transformations of
the plane by the following complex functions:

e Z =27+ brepresentsatrandation of vector b, where be C;
Z=z¢€'? isarotation of angle 6, where 0 [0, 2r) ;
Z=r z isadilation/ contraction of center O and factorr >0;
Z = Z means symmetry relative to thereal axis;
Z =1/z isan inversion relative to the unit circle.
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By composing such transformations we obtain the linear complex function
Z=az+bh,
wherea, b e C, a= 0, and the circular (or homographic) function
az+b

cz+d
where ad = bc, and z=—d/c if c#0.

The derivability of f makesit conformal transformation in the plane:
5.25. Theorem. Let f: D— C be aderivable function on the domain Dc C.

If f/(2)=0 at each ze D), then f redlizes a conformal transformation of
this domain.
Proof. Let y; and y, be two smooth curves in D, which are concurrent in
the point z = x + iy. The angle a between these curvesis defined by
cosa =<ty, t, >,

where t; and t, are the unit tangent vectorsto the curvesy, andy, .

Since f is a derivable function, theimagesI'; =f(y;) and I, =f(y,) are
also smooth curves (see Fig.1V.5.5.), which form the angle .

D /(D)
f
e 24
0 X
Fig.IV.5.5.

The assertion of the theorem reduces to the equality a = o, for arbitrary

v1 and y,in D. The proof is based on the relation AZ = f/(zo)-Az, which

was aready used to obtain the geometric interpretation 5.4 of the loca
action of aderivable function. More exactly, we recall that

argAZ = arg f / (2) +argAz,
where “ =" can be successfully replaced by “ =“ in small neighborhoods of
the point z . If we take the increment Az along vy, , then argAz= a4, and for

the corresponding image I';, argAZ = o, . Consequently, we obtain

@ = arg f/(z)+a1 :
with equality for small increments of z
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Similarly, along vy, we have
Wy = arg f/(z)+a2.
The subtraction of these relations leads to the desired equality, because
a=0,—0o;,ando=wm,— 0. &>

5.26. Remarks. Besides this theorem, in practice we frequently have to use
other results concerning the conformal mappings. Without going into the
details of the proof, we mention severa theorem of thistype:

e (The converse of Theorem 5.25) Each conformal mapping of a plane

domain is realized by a derivable complex functionf, or by f .

e (The principle of correspondent frontiers) Let the domain D < C be
simply connected, i.e. each closed curve from D hasitsinterior in D,
and let y = Fr D be a piecewise smooth curve. Let dlsof: D—»C bea

derivable function on D, which is continuouson D Uy =D . If y and

I' = f (y) are traced in the same sense, then f realizes a conformal
correspondence between D and the interior of I", noted (I').

e (Riemann-Carathéodory theorem) Every simply connected domain,
whose frontier has at least two points, allows a conformal mapping
on the unit disk.

5.27. Applications. The derivable complex functions are frequently

used in Mathematical Physics (see [KE], [HD], etc.). For example, since

P =Re f isaharmonic function, it is appropriate to describe a potential,

e.g. electrostatic. The complex potential f = P + i Q is often preferred,

because of its technical and theoretical advantages. In particular, Q is

physically meaningful too, as a consequence of the orthogonality of the
equipotential lines P = constant, and the lines of force Q = constant.

Other applications concern the heat conduction and the fluid flow. For
example, we may obtain wing profiles from disks if we use conformal
transformation like the Jukowski’ s function

Z=z+ az/ Z.
The advantage is that the streamlines around a disk are very simple,

and the conformal transformation allows us to find out the streamlines
around other profiles.
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PROBLEMS §1V.5

1. Formulate and prove the rules of deriving the sum, product, quotient, and
composition of complex functions of a complex variable.
Hint. The rules for real functions of areal variable remain valid.

2. Show that the functions exp, Ln, sin, cos, sinh, and cosh are derivable at
each point of their domain of definition, and find the derivatives.

Hint. Identify the real and imaginary parts, and study the continuity of their
partia derivatives (Theorem 5.8). Use either one formula of Corollary 5.6,
and express the derivatives asin the real case.

3. Show that the function f : C —» C, of values

RezIMz ) 4y it z<0
f(2=2 |7
0 if 2=0

fulfilsthe C-R conditions at zy= 0, but it is not derivable at this point.
Hint. Because P =Re fand Q = Im f have the values

— Y if (xy)=(00)
P(X,¥)=Q(X,y) =1 +/x% + y?
0 it (x,y)=(00)

it is easy to show that

oP oP oQ 0Q

—(0,0) =—(0,0) =—=(0,0) =—=(0,0) = 0.

ax( ) ay( ) ax( ) ay( )
Study the derivatives on directions of equationsy = mx.

4. Letf=P+i Q:D —C beafunction for which P and Q are partialy
derivable at a point (Xo, Yo) €D. Show that the C-R conditions hold if and

only if Z—f_(xo, Yo) =0. In particular, study the functionf(2) = z.
Z
Hint. f dependson z viax andy, according to the formulas
x=%(z+2) and y=2(z-2) .
In the particular case, f isnowhere derivable.
5. Write the C-R conditions for afunction Z = f (2) in the cases:
1. zisexpressed in polar coordinates, and Z in Cartesian coordinates;

2. zisexpressed in Cartesian coordinates, and Z in polar coordinates,
3. Both zand Z are expressed in polar coordinates.
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Hint. Change the coordinates by deriving composite functions in the C-R
conditions in Cartesian coordinates.
1.1f z=ret and Z= X +iY, where X =9(r,t) and Y = Q(r,t), then
op_109 .00 109
o r at' or r ot
2.1f z=x+iy and Z = R(x, y) € T*Y) | then the C-R conditions become

R_paT R

OX oy oy  ox
3.1f z=ré! and Z=9(r,t)e*"Y  then the C-R conditions take the form
IR R OT __ 0N 0T

— and — =-Rr — .
or r ot ot or

6. Find the domain of definition of the function f , of values

f(z)= iz”!,
n=0

and show that no analytic prolongation is possible.

Hint. The power series has R = 1, hence the domain of f isthedisk D(0, 1).
The impossibility to prolong f outside this disk follows from the property of
this function to take high values when we get close to the circumference. In

fact, if wetake z=r(cosa +isina), where :EZn ,p,qeN*, and p<q,
then we may use q to decompose the sum and to obtain

g-1 | © ) gq-1
f@)= >+ Y Y- Y
n=0

n=q n=q n=0
. nl n! q_l nl
Sincer <1, we have ‘z ":r <1 for al n<q, hence Zz 1< q. Onthe
n=0
other hand, for n>q we obtain 2™ =r™ e R,, hence | > z"|= >'r™. The
n=q n=q

last sum takes arbitrarily large values if r is close enough to 1, and so does
| f| too, according to the inequality | f (z)| > Zr”! —q. Finaly, because
n=q
{z:cosa+isina:a:§27r;p,qu;p<q}

IS adense set in the circumference of the unit circle, this property of f also
holds for “irrational directions’” a =2zv , with v [0, )\ Q.
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7. Find the critical points and indicate cuts for the functions:
@ ¥2+1: (b) Ln (Z+1); (©) LnZ 4422 _1: (d) Ln (z— 1) + Arcsin
z2—i

Hint. Identify the real and imaginary parts of these functions, where the
index of the branches is visible. For the logarithmic part in (c), we may
include [—1, i] asapart of the cut (compare to Examples 1V.5.18).

8. Find the derivable functionf = P +i Q, if we know that:
(i) P(x,y)=¢e"-cosy,andf(0)=1;
(i) P(xy)=3xy’=x> andf(i) =0;
X
(i)  P(xy) =
X2+ y?
(iv) Q(x y)=e"-cosy,andf(0)=1;
V) QxY)=1-3x"y+y° andf(0)=i;
- -~y .
(vi) Q(xy)= !
X+ y?
(vii) P2(x,y) —Q?%(x,y) =sinxcoshy.
Hint. Use Theorem 5.21 and Remark 5. 22. In the case (vii), recognize that
sinx coshy=Re (sinz),and P? —Q? =Re f . Theresulting function f is
multi-valued, hence a cut of the planeis advisable.

9. Find the derivable functionf =P + i Q, for which f (1) = e, and

X

: Xe
P(x,y)cosy+Q(x,y)siny=———.
X“+y

Hint. Remark that e “=¢e *(cosy-isiny), and

e *[P(x, y)cosy+Q(x, y)siny|= Re[e‘zf (z)J .
Our previous experience, e.g. problem 8 from above, furnishes the relation

X =Re(1), hence f (z) = &7,
Z Y

X2+y2

10. Show that the circular mappings preserve the family %, of straight
lines and circlesin aplane. What circles are mapped into circles?
Hint. The general equation of acurve y € ¢ is

A(x2 + y2)+ Bx+Cy+D=0.
The elementary transformations contained in a homographic map preserve
the form of this equation. In particular, the formulas of an inversion are
X=— 2 y=—10"

x2+y2 x2+y2
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11. Show that we can determine a circular transformation by three pairs of
correspondent points (in spite of its dependence on four parameters). Using
this fact, find homographic transformations for which:

() Theinterior of the unit circlein transformed into {Z € C:|Z —i|> 2} ;

(b) The upper haf-planeistransformed into the unit circle;

(c) The (open) first quadrant is applied onto {Z e C:|Z|<1,ImZ > 0} .
Hint. At least one of the parameters a, b, ¢, d differs from zero, so that we
may simplify and determine the remaining three parameters from three
independent conditions. In the concrete cases, take three pairs of points on
the corresponding frontiers, and respect the orientation (correlate to 5.26, or
chose some proof-points in the transformed domains).

12. Find out the images of the circle C (0, r) through the functions:
2
@ Z =§ . ) Z=22: (0) Z-= z+a7 ,a eR, (Jukowski).

Hint. Replacez=r (cos 6+ i sin 0), 6 €[0,27) . The sought for images are:
(a) The unit circle traced twice; (b) The circle of radius r 2, traced twice; ()
Either elipse or hyperbola, depending on r and a.

13. Show that the function Z = sin z realizes a conformal transformation of
thedomanD ={zeC:—-n<Rez<m,Imz>0} into the complex plane C,
cut along the line segment [—1, 1] and the negative imaginary axis.
Hint. Writesin z=sinxcoshy + i sinh y cos x , and show that the function
sin establishesa 1:1 (i.e. bijective) correspondence between D and
C\{[-1, 1] UiR _}.

Identify three linear parts in the Fr D, and find their images through this

function.

14. A singular point z, € D, of the functionf: D — C, is said to be apparent

(illusory or eliminable) if f allows a derivable prolongation to this point.
Show that zy= 0 is an apparent singular point of the functions:
@ sinz, (b) 1-cos2z c z_
z ' 272 e’ -1
and specify the Taylor series around z, of the corresponding derivable
prolongations.
Hint. Use the power series of sin, cos, and exp. In the third case we have to

evaluate the coefficients of the quotient series.
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- null (linear) 32
compact
- &- compact 157
- 0One point compaction 78
- sequentially 152, 157
completion
- inorder7
- metric 65
cone 7
conjunction (fundamental) 3
continuum
- hypothesis 16
- power 15
- structure of 153
convergent (-ce) / divergent 18
- absolute 80, 85
- amost uniform 96
- faster / lower 90
- hnet6l
- point-wise 94
- quasi-uniform 101
- radiusof 123
- semi- (conditionally) 85
- sequence 18, 61, 65, 94
- sgquare 86
- uniform 95
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coordinates
- Cartesian 20, 202, 235,
237, 249
- polar 20, 235, 237
- change of 237
correspondence 8
cover (open, sub-) 151
curve 24
cut
- IinC 253

- of ardation5
- of the plane 236

D

D’ Alembert 82
Darboux 140
dependence

- functiona 238

- linear 32, 238
derivative / derivable

- complex 245

- globally 249

- higher order 206

- inadirection 201

- partia 196, 204

two times 206

dlagonal 5
diffeomorphism 234
differentia / differentiable

- f:A->R,AcCcR184

- f in normed spaces 188

- Fréchet 188

- Gateaux 188

- onaset 185, 189

- second order 193

two times 193

dlfference (of sets) 1
digit 14
dimension 33
distance

- metric 56

- uniform 73
distributivity 1

domain

- complex 25

- of convergence 94

- of definition 8, 251
duality

- agebraic 35

- topological 165
Duhamel 83, 87

E

element

- best approximation 60

- Qreatest 6

- maxima 7

- minima 7

- smallest 6

unit 36

embeddl ng (canonical) 74, 147
equation

- characteristic 45

- explicit/ implicit 27, 224

- of acurve 24
equivalence (class of) 5
Euler

- formulas 126, 134

- number 136
extremum

- free/ conditiona 232

- loca 214, 232

F

Fermat 214
field

- scalar 196, 201

- vector (function) 198
filter

- elementary 12

- free/tied / ultra- 12

- proper / improper 4

- definite (semi-) 177
- inR" 174
- indefinite 177
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- polar 174

- positive/ negative 177

- quadratic 174, 215
function

- 1:1/oneto many 8

- agebraic 125, 142

- anaytic 125, 252

- bijective 8

- Characteristic 9

- choice 10

- circular (homographic)

258

- component 71

- continuous 137, 144

- Darboux 140

- harmonic 255

- Hermitian 175

- implicit 224, 227

- injective 8

- multivalued (-valent) 8

- Objective 232

- power 245

- quadratic 174

- rational 142

- real / complex 24

- surjective 8

- symmetric 174

- transcendental 125

- u-continuous 139, 156

- working 3
functional

- bilinear 169

- Hermitian 175

- linear 35

- multi-linear (n-) 169
Frobenius 22

G
gate (logic) 2
gradient (grad f )196
graph (of afunction) 8

H
Hadamard 118
L' Hopital 138
Hamel 10
Hamilton 42
Hausdorff 10, 146
Heine 146
Hermite 175
Hesse 207
Hilbert 65, 168
homeomorphism 144
horistology 154

ideal

- in9°(7) 12

- of perspectives 154
image

- direct/inverse 8

- of alinear subspace 37
inclusion 1
integral

- sine/cosne 115

- sum 10, 62
intersection 1
invariant (topological) 153
inverse/ inversion

- local 234

- of afunction 8

- of arelation 5

- of atransformation 37
isomorphic / isomorphism

- linear spaces 40, 171

- metric 171

Jacobi 198
junction 149

Kelley 9, 74
kernel 37
Kronecker 32
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L

Lagrange 105, 232
Laplace 237
lattice (o-) 7
Leibniz 79, 88
limit

- of afunction 18, 144

- of asequence 18

- punctua 73

- superior 118, 120, 250
Lipschitz

- constant 140

- function 140, 164
logarithm (complex) 128
logic (formulas, etc.) 3

M

Mac Laurin 108
manifold (linear) 30
matrix

- adjoint 42

- transition 34
measure (of an angle) 55
Mertens 86
metric 56

- discrete 56, 75

- Euclidean 56

- pseudo- 56

N
neighborhood(s)
- inC48
- inR 47

- Sizeof 65

- system of 48
net (subnet) 9
norm 52, 54

- Euclidean 55

- sup/L'54, 157

- uniform convergence 96
nucleus 179

number
- (inrational 17
- cardina 15
- integers 16
- natura 15
- positive 17
- rea 17
- complex 19
- agebraic/transcendent 23
- double 22, 28

@)
operation
- algebraic 16, 19, 29
- topological 51
- with functions 8, 36, 185
- with sequences/ series 85
- withsets1
operator
- additive 34
- adjoint 176
- bounded 165
- continuous 165
- homogeneous 34
- integration 35
- linear 34, 165
- sdf-adjoint 176
- topologica 50

- causdlity 13

- lexicographic 13

- partial / total 5

- product 6, 58

- strict 7

- well5
orthogonality 55

part

- entire136

- of atotal set 1

- real /imaginary 20, 24
partition 6
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plane
- hyper- 30
- complex 20
polynomial
- characteristic 41
- Taylor 104
point(s)
- accumulation 50, 62
- adherent 50
- atinfinity 153
- convergence 94
- critical 253
- extreme 214
- fix 67,68
- frontier 50
- inflexion 108
- interior 50
- intermediate 6, 62
- regular / singular 252
- stationary 214

- North 21

- order of 254

- singularity 254
power

- complex 128

- of continuum 15

- st (7)1
product

- Cartesan5
convolution 85
order 6
scalar 52, 53
topological 51, 148
prolongation

- continuous 144

- anaytic 251
projection

- canonical 74, 148, 197

- ¢ onR 235

- function 8

- stereographical 21
Pythagoras 55

Q

guaternions 22

Raabe 83, 87

relation(s) 5

remai nder
- Cauchy’sform 105
- Lagrange'sform 105, 213
- Taylor 104

Riemann 21
- C-R conditions 247
- sphere2l
- integra 62

Riesz 168

Rolle 105

S
Schwarz 53, 207
segment (line) 30
series
- dternate 79
- complex geometric 121
- complex power 121
- geometric 93, 117
- harmonic 79
- numeric 77
- of functions 94
- power 117
- product 85, 92
sequence 9
- bounded 65
- functions 94
- fundamental (Cauchy) 70
- generdized (net) 9
- real / imaginary 160
- u-fundamental 96

- bounded 65

- convex 30

- connected 149, 255

- connected by arcs 150
- countable 15
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- dense 64
- directed 6
- equivalent 15
- fuzzy 9
- of complex numbers 19
- of real numbers 18
- ordered 5
separated 149
S gnature 177
singularity
- apparent 263
- condensation of 103
- critical 253
- essentia 254
isolated 254
S|Oace(8)
complete 65, 71, 73
- dual 35, 165
- Euclidean 52
- isomorphic 40
- linear real / complex 29
- metric 56, 70
- normed 54
- proper (subspace) 41
- scalar product 52
- subspace 29
- topologica 48, 51, 147
u-topological 157
spectrum 41
Stirling 131
Stolz 76, 86, 88
structure
- agebrac 29, 47
- topologic 47, 48
sum
- infinite 77
- integral 10, 62
partia 77
Sylvester 177
- inertialaw 177
- theorem 178, 182

T
Taylor 104
- formula213
- polynomial 104
- remainder 104
topol ogy 48
compatible 51
- discrete/ rough 50, 154
- Euclidean 48, 57
- Intrinsic 49, 57
- locally compact 159
- of haf-intervals 49
- quotient / product 51, 148
- uniform 157
trace 45
transformation
- linear 34
- smooth 234
transposition 33
Tukey 10

union 1

V
value (proper) 41
vector 29
- free30
- linearly (in)dependent 32
- position 30
- proper 41

W
Waerden 103
Welerstrass 18, 70
weight (function) 52

Z
Zermelo 10
Zorn 10
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[A-M]
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[BN]
[BN]
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[B-S
[B-S-T]
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[BT.]
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[C-E]
[CG]

[Cl]
[C-1]
[CO]
[CR]
[C-T]
[CV]
[DB]

[DE]

BIBLIOGRAPHY

Arghiriade Emanoil, Curs de algebra superioara, Vol. I, 11, EDP,
Bucuresti, 1963

Arama Lia, Morozan Teodor, Culegere de probleme de calcul
diferenrial si integral, Ed. Tehnica, Bucuresti, 1966

Brezinski C., Accélération de la Convergence, Springer-Verlag,
Berlin, Heidelberg, New Y ork, 1977, Lecture Notes Math. 584
Boboc Nicu, Functii complexe, EDP, Bucuresti, 1969

Bourbaki Nicolas, Eléments de mathématiques, Livrelll,
Topologie Générale, Ed. Hermann, Paris, 1965

Bourbaki Nicolas, Eléments de mathématiques, Livres V-VI, Ed.
Hermann, Paris, 1967

Balan Trandafir, Sterbeti Catalin, Analizi Complexa — Breviar
teoretic si culegere de probleme, Ed. MJM, Craiova, 2003

Beju l., So6s E., Teodorescu P.P., Tehnici de calcul, Val. I, 11, 111,
Ed. Tehnica, Bucuresti, 1976

Balan Trandafir, Matematici speciale — Ecuarii diferenyiale si
funcrii speciale, Reprogr. Univ. Craiova, 1982

Balan Trandafir, Capitole de matematici aplicate — Analiza
Fourier, Ed. Universitaria, Craiova, 1998

Balan Trandafir, Generalizing the Minkowskian Space-time, Studii
Cercet. Matem. Tom 44, Part | in Nr.2, p. 89-107; Part |1 in Nr.4,
p. 267-284

Balan Trandafir, Guide to Mathematical Terms, Ed. Radical, 1998
Costinescu O., Amihaesal C., Béarsan T., Topologie generala —
Probleme, EDP, Bucuresti, 1974

Creanga |., Enescu |., Algebre, Ed. Tehnica, Bucuresti, 1973
Calugareanu Gheorghe, Elemente de teoria funcriilor de o
variabila complexa, EDP, Bucuresti, 1963

Colojoara lon, Analiza matematica, EDP, Bucuresti, 1983
Cerchez M., lambor I., Curbe plane, Ed. Tehnica, Bucuresti, 1989
Costinescu Olga, Elemente de topologie generala, Ed. Tehnica,
Bucuresti, 1969

Cristescu Romulus, Analizz funcrionala, EDP, Bucuresti, 1970
Craiu M., Tanase V., Enaliza matematica, EDP, Bucuresti, 1980
Craciun C.V., Contraexemple in analiza matematica, Ed. Univ.
Bucuresti, 1989

Demidovici Boris, Problemsin Mathematical Analysis, Mir Publ.
Moscow, 1989

Dobrescu Eugen, Analizz matematica, EDP, Bucuresti, 1975

270



[DJ]
[FG]

[G-O]

[G-S]
[HD]
[HP]
[H-S]
[1-P]

[KA]
[K-A]

[KE]
[K-F]

[KJ]
[KK]

[K-K-M]

[KO]
[KP]
[L-F]

[MAI]
[MC]

[ME]
[MG]

Dieudonné Jean, Foundations of Modern Analysis, Academic
Press, New Y ork, 1960

Fihtenholt G.M., Cursde calcul diferenyial si integral, Vol.l, 11, I11,
Ed. Tehnica, Bucuresti, 1963-1965

Gelbaum B.R., Olmsted J.M.H., Counterexamplesin Analysis,
Holden-Day Inc., San Francisco, London, Amsterdam, 1964 (trad.
Ib. rom., Ed. Stiintifica, Bucuresti, 1973)

Gagpar Dumitru, Suciu Nicolae, Analiza complexa, Ed. Academiei
Romane, Bucuresti, 1999

Homentcovschi D., Functii complexe cu aplicayii n stiinga si
tehnica, Ed. Tehnica, Bucuresti, 1986

Halmos Paul, Finite-dimensional vector spaces, Springer-Verlag,
New-Y ork, Heidelberg, Berlin, 1974

Hewitt E., Stromberg K., Real and Abstract Analysis, Springer-
Verlag, Berlin, 1969

llyin V.A., Poznyak E., Fundamentals of Mathematical Analysis,
Parts|, I, Mir Publishers, Moscow, 1982

Kurosh A., Higher Algebra, Mir Publishers, Moscow, 1975
Kantorovici L.V., Akilov G.P., Analizz funcfionala, Ed. Stiintifica
si Enciclopedica, Bucuresti, 1986

Kreysig E., Advanced Engineering Mathematics, John Wiley, New
York, 1972

Kolmogorov A.N., Fomin S.V., Elements of Function Theory and
Functional Analysis, Nauka, Moscow, 1968

Kelley John L., General Topology, D. van Nostrand Comp., 1957
Kuratowski K., Introducere Tn teoria multimilor si topologie,
Warszawa, 1955 (traducere din poloneza)

Krasnov M.L., Kisselev A.l., Makarenko G.I., Functions of a
aomplex variable, Operational Calculus, and Stability Theory —
Problems and Exercises, Mir Publishers, Moscow, 1984

Konnerth O., Greseli tipice in invararea analizel matematice, Ed.
Dacia, Cluj-Napoca, 1982

Kessler Peter, Elemente de teoria mulzimilor si topologie generala
Culegere de exercirii si probleme, Ed. Secolul XXI, Craiova, 1996
L eonte Alexandru, Predoi Maria, Culegere de probleme de analiza
matematica, Repr. Univ. Craiova, 1981

Markushevich A.l., Teoria analiticeskih funktzii, Moskva, 1950
Meghea C., Introducere in analiza matematica, Ed. Stiintifica,
Bucuresti, 1968

Mendelson Elliott, Boolean Algebra and Switching Circuits,
McGraw Hill Book Comp., 1970

Marinescu G., Tratat de analizz funcrionala, Ed. Academiel RSR,
Bucuresti, 1972

271



[MM]
[NC4]
[NC;]
[NC4]
[NC4]
[N-D-M]
[NM]
[N-R]
[NS]
[O-H-T]

[OV]
[P-C-Ry]

[P-C-R,]

[PG]
[P-H-M]

[PM.]
[PM_]

[PM]
[P-S]
[PV]
[RI]
[RM]

[R-S]

Megan Mihall, Irasionalitatea si transcendensa numerelor esi T,
Revista Matematica aelevilor, Timisoara, XVIII, Nr.1(1987)
Niculescu Constantin, Analiza matematica pe dreaptareala. O
abordare contemporana, Ed. Universitaria, Craiova, 2002
Niculescu Constantin, Probleme de analizi matematica, Ed.
Radical, Craiova, 1994

Niculescu Constantin, Fundamentele analizei matematice -
Analiza pe dreapta reala, Ed. Acad. Romane, Bucuresti, 1966
Niculescu Constantin, Calculul integral al functiilor de mai multe
variabile. Teoriesi Aplicarii, Ed. Universitaria, Craiova, 2002
Nicolescu Miron, Dinculeanu N., Marcus S., Manual de analizi
matematica, Vol. I, 11, EDP, Bucuresti, 1963

Nicolescu Miron, Funcyii reale si elemente de topologie, EDP,
Bucuresti, 1968

Negoita C.V., Ralescu D.A., Mulsimi vagi si aplicariilelor, Ed.
Tehnica, Bucuresti, 1974

Nikolski S.M., A Course of Mathematical Analysis, Val. I, II, Mir
Publishers, Moscow, 1981

Olariu V., Halanay A., Turbatu S., Analizaz matematica, EDP,
Bucuresti, 1983

Olariu Valter, Analizz matematica, EDP, Bucuresti, 1981

Predoi M., Constantinescu D., Racila M., Teme de calcul
diferensial, Ed. Sitech, Craiova, 2000

Predoi M., Constantinescu D., Racila M., Teme de calcul integral,
Ed. Sitech, Craiova, 2000

Preup G., Allgemeine Topologie, Springer-Verlag, 1972

Popa C., Hiris V., Megan M., Introducere Tn analiza matematica
prin exercirii si probleme, Ed. Facla, Timisoara, 1976

Predoi Maria, Analiza matematica, Ed. Universitaria, 1994

Predoi Maria, Sur la conver gence gquasi -uniforme, Periodica Math.
Hungarica, Vol. 10(1979), Nr.1

Predoi Maria, Sur la conver gence quasi -uniforme topol ogique, An.
Univ. Craiova, Nr.11(1983), p. 15-20

Pélya G., Szegd G., Aufgaben und Lehrsatze aus der Analysis, Vol.
I, I, Springer-Verlag, Berlin Heidelberg New-Y ork, 1970
Piscounov V., Calcul Differentiel et integral, Vol. 1, 11, Editions de
Moscou, 1972

Rus A. loan, Principii si aplicayii ale teoriei punctului fix, Ed.
Dacia, Cluj-Napoca, 1979

Reghis Mircea, Elemente de teoria mulsdimilor si logica
matematica, Ed. Facla, Timisoara, 1981

Rasiova H., Skorski R., The Mathematics of Metamathematics,
Polske Akad. Nauk, Warzyawa, 1963

272



[RW]
[SG]
[SC]
[SH]
[SO]
[SL]
[SS]
[TK]
[UC]
[VB]
[V-F]

[YK]

Rudin W., Functional Analysis, McGraw Hill Company, New-
York, 1973

Siretchi Gh., Calcul diferenrial si integral, Vol. I, 11, Ed. Stiintifica
si Enciclopedica, Bucuresti, 1985
Silov G.E., Analiza matematica, Vol. I, I, Ed. Stiintifica,

Bucuresti, 1983-1985

Schaefer Helmut, Topological Vector Spaces, New-Y ork, 1966
Stanasila Octavian, Analiza matematica, EDP, Bucuresti, 1981
Schwartz Laurent, Analyse Mathématique, Hermann, Paris, 1967
Stoilow Simeon, Teoria functiilor de o variabila complexa, Ed.
Didactica si Pedagogica, Bucuresti, 1962

Teleman K., Geometrie diferensiala locala si globala, Ed. Tehnica,
Bucuresti, 1974

Udriste Constantin, Linii de camp, Ed. Tehnica, Bucuresti, 1988
Vulih Boris Z., Introduction a I’ analyse fonctionelle, Nauka, 1973
Vladimirescu lon, Popescu Mariana, Algebra Liniara si Geometrie
Analitica, Ed. Universitaria, Craiova, 1994

YosidaK., Functional Analysis, Springer-Verlag, 1965

273



