DISCIPLINE ACADEMIC SHEET

ACADEMIC YEAR 2015 - 2016

1. PROGRAMME DATA

1.1 Higher Education Institution	UNIVERSITY OF CRAIOVA
1.2 School	Automation, Computers and Electronics
1.3 Department	Computers and Information Technology
1.4 Field of Study	Computers and Information Technology
1.5 Study Level ¹	L (licence/ undergraduate)
1.6 Study Program (name/code) ² /Calification	Computers / L206010101010

2. DISCIPLINE DATA

2.1 Discipline Name			Numerical Methods						
2.2 Course Activities Holder			Associate Professor, Ph.D, Maria-Magdalena BOUREANU						
2.3 Practical Activities Holder		Associate Professor, Ph.D, Maria-Magdalena BOUREANU							
2.4 Study	1	2.5 Semester	2	2.6 Discipline Type	2.6 Discipline Type DF 2.7 Discipline DI 2.8Evaluation E			Е	
Year				(content) ³ Conditions Type					
						$(mandatory)^4$			

3. ESTIMATED TOTAL TIME (hours per semester of teaching activities)

3.1 Number of hours per week	4	in which: 3.2	2	3.3 seminar/laboratory/project	2
		couse			
3.4 Total hours of curriculum	56	in which: 3.5	28	3.6 seminar/laboratory/project	28
		course			
3.7 Time distribution					hours
 Study after manual, course support, bibliography and notes 				20	
 Additional documentation in library, on specialized electronic platforms and field 				14	
 Training seminars / labs, homework, portfolios and essays 				14	
 Tutoring 				-	
 Examinations 				2	
 Other activities: consultations, student meetings 			2		
Total hours per individual	52				

Total hours per individual activities	52
3.8 Total hours per semester ⁵	108
3.9 Number of credits ⁶	4

4. PRECONDITIONS (where appropriate)

4.1 of curriculum	
	Linear algebra, Mathematical Analysis, Differential equations,
	Programming.
4.2 of competence	

5. CONDITION (where appropriate)

5.1. of the course	The teaching is thought to be both explanatory and interactive, at the blackboard,				
5.1. of the course					
	by actively engaging the students into the learning process. Thus, 70% of the				
	activity represents a theoretical teaching based on the course syllabus, while 30%				
	the activity represents interaction with students, to make sure that the learning				
	process is not only smooth, but also interesting enough to make students getting				
	involved. All the new notions, definitions, properties and theorems are introduced				
	rigorously, but we choose to focus on the statement of the new theorems and on				
	their applicability, instead of their proofs. Consequently, only part of the proofs are				
	introduced to the students (for the rest of them we send the interested students to				
	appropriate references) and we present applications of the theorems since we				
	consider that a calculus made by hand represents one of the best ways to make sure				
	that the students understand correctly the algorithms.				
5.2. of seminar/ laboratory/project	The laboratory classrooms are very well equipped with all that is needed for this				
	discipline: computers, the appropriate programming languages, network and				
	internet connection. Our goal is to make students better understand the numerical				

	algorithms and to be able to utilize them by means of programming languages.
6. SPE	CIFIC LEARNED SKILLS ⁷
	• C1. Working with fundamentals of mathematics, engineering and informatics.
	C1.1. Proper use in professional communication of the eigen concepts of calculability, complexity, programming paradigms and modeling of computer and communications systems.
Professional competences	C1.2. Using theories and specific tools (algorithms, charts, models, protocols, etc.) to explain the operation and structure of hardware, software and communication systems.
nal co	 C3. Solving problems using computer science and engineering tools.
ofessio	C3.1. Identification of a class of problems and solving methods specific for computer systems.
Pre	C3.2. Using interdisciplinary knowledge, solution patterns and tools to conduct experiments and interpret their results.
	C3.3. Applying solution by means of engineering tools and methods.
ll es	• CT1. Honorable, responsible, ethical behavior, within the law, to ensure the reputation of the profession.
Transversal Competences	• CT3. Proof of the spirit of initiative and action for updating professional, economic and organizational culture knowledge.

7. **DISCIPLINE OBJECTIVES** (based on the specific learned competences)

7. DISCIPLINE OBJECTIVES (based	on the specific learned competences)	
7.1 General objective of the discipline	 a on the specific learned competences) This is a fundamental discipline which introduces to students the main numerical methods concerning linear and nonlinear algebra, function approximation, differential and integral calculus, numerical resolution of differential equations and partial differential equations. It also aims to enhance the ability to analyze different mathematical models in the engineering field, using the numerical techniques and to solve specific problems by turning the numerical methods into programming languages. The laboratory focuses on a deep and thorough understanding and the optimal algorithmization of the knowledge thought during the course, aiming the development of numerical codes and their testing on different kinds of applications. As a result, the student is given the theoretical and practical instruments to find the solution of some applicative problems and is able to analyze the results obtained. 	
7.2 Specific objectives	 The specific objectives are: To get acquainted with the basics of Numerical Analysis: interpolations and adjustments; algebrical systems, both linear and nonlinear; eigenvectors and eigenvalues; learning the idea of approxiamation and the treatment of the error; iterative methods and estimation of the error; numerical integration; differential equations and systems; approximation of the roots of equations, and computation of the errors of the roots. To acquire the skills of recognizing the main types of problems that appear in Numerical Analysis and to be able to select and to apply the appropriate methods in order to solve them. To induce the ability to write the pseudo-codes for simple algorithms and then to transpose them into programming languages, like C++. 	

8. CONTENT

8.1 COURSE (content units)	No hours	Teaching methods
Ch. 1 Numerical methods in algebra	10	The main method of
1.1 Types of matrices.		providing information for
1.1.1 Square matrices of order n.		knowledge is through
1.1.2 Diagonal matrices; unit matrix of order n.		lectures and supporting
1.1.3. Upper (lower) triangular matrix of order n.		material on the
1.1.4. Band matrix of order n.		blackboard. To assist the
1.2. Matricial transformations for solving linear systems.		students in assimilating
1.2.1. LR factorization for a real matrix of order n; tridiagonal and		this knowledge we use
pentadiagonal cases.		different means, like
1.2.2. Iterative methods: Jacobi, Seidel -Gauss; (sparse matrices case).		debate, exposition,
Study of convergence.		exemplification,
1.2.4. The calculus of a determinant and an inverse of a matrix.		dialogue. The structure
1.2.4.1. Chio method.		of the course takes into
1.2.4.2. Gauss method.		consideration the fact
1.2.4.3. LR factorization method.		that 70% of the activity
1.2.4.4. Gauss and iterative methods for the calculus of an inverse of a		represents a theoretical
matrix.		teaching and 30% of the
1.3 Numerical methods for solving nonlinear systems.		activity represents
1.3.1 Newton methods for numerical solving of nonlinear equations and		dynamic interaction with
systems of nonlinear equations. Study of convergence.		students. As for the
1.3.2 Modified Newton method for numerical resolution of systems of		knowledge assimilated
nonlinear equations.		during their private
1.3.3 Bairstow method for numerical resolution of algebraic equations.		study, we provide a
1.4. Determination of the characteristic polynomial, the eigenvalues and the		support of the course and we also offer additional
eigenvectors		information and
1.4.1. Diagonal minors method. 1.4.2. LeVerrier method.		
1.4.2. Levenner method. 1.4.3. Krylov method (the possibily to determine the eigenvectors)		references (printed and/or electronically).
1.4.4. Fadeev method (the possibility to determine the eigenvectors)		and/or electronically).
matrix)		
1.4.5. Danilevski method (the possibility to determine the eigenvectors)		
1.4.6. LR method to determine the eigenvalues and the eigenvectors.		
1.4.7. Newton like iterative method for the estimation of the extreme		
eigenvalues of a real symmetric matrix		
Ch. 2 Function approximation	6	
2.1. Interpolation on simple and multiple nodes.	Ŭ	
2.1.1. Lagrange interpolating polynomial. Error minimization.		
2.1.2. Newton interpolating polynomial. Error minimization.		
2.1.3. Hermite interpolating polynomial.		
2.1.3. Cubic spline interpolation.		
2.1.4. Least squares approximation.		
Ch. 3 Numerical methods for integral approximation.	4	
3.1 Evaluation of simple integrals.		
3.1.1. Numerical approximation on two knots (trapeze formula).		
3.1.2. Numerical approximation on three knots (Simpson formula).		
3.1.3. Numerical approximation on four knots (Newton formula).		
3.2. Evaluation of double integrals on convex domains with polygonal		
boundary.		
Ch. 4 Numerical methods for differential equations and partial differential	8	
equations.		
4.1. Differential equations of order I and higher with initial condition (Euler,		
Runge-Kutta methods)		
4.2. Differential ordinary equations with bi-local conditions (Sturm-		
Liouville problem).		
4.3 Finite difference operators; types of partial differential equations of	1	
order two.		
order two. 4.4. Partial differential equations of order two: elliptic type; finite difference		

Bibliography⁸

- 1. Ascher U., Greif C., A First Course in Numerical Methods (Computational Science and Engineering), SIAM, 2011
- 2. Burden R. L., Faires J. D., Numerical Analysis, Brooks Cole Ed., 2004
- 3. C de Boor, A practical guide to splines, 2nd ed. Springer, New York, 2000
- 4. Chatelin F., Spectral approximation of linear operators, Academic Press, New York, 1983
- 5. Hoffman J., Frankel S., Numerical Methods for Engineers and Scientists, Second Edition, Marcel Dekker, Inc., 2001
- 6. Ebâncă D., Metode numerice in algebră, Editura Sitech, Craiova, 2005
- 7. Mihoc Gh., Micu N., Teoria probabilităților si statistică matematică, E. D.P., Bucuresti, 1980
- 8. Militaru R., Méthodes Numériques. Théorie et Applications, Ed. Sitech, Craiova, 2008
- 9. Philips G., Taylor T., Theory and Applications of Numerical Analysis, Academic Press, 1999
- 10. Popa M., Militaru R., Analiză Numerică, Note de curs, Ed. Sitech, Craiova, 2003
- 11. Popa M., Militaru R., Metode numerice algoritmi și aplicații, Ed. Sitech, Craiova, 2007

8.2 Practical activities (topics/homework)	No hours	Teaching methods
1. Resolution of systems of linear equations: Gauss method, LR factorization	6	
method (Doolitle, Cholesky), iterative methods (Jacobi and Seidel-Gauss).		Most of the work is done
2. The calculus of a determinant and of the inverse of a matrix (Gauss method,	2	on the computer. The
Chio method, iterative method).		algorithms developped
3. Characteristic polynomial, eigenvalues and eigenvectors (diagonal	4	during the course are
minors method, Fadeev method, LeVerrier method, Krylov method, LR		implemented as
method, Danilevski method). Resolution of nonlinear equations.		computer programs. In
4. Lagrange interpolating polynomial, Newton interpolating polynomial,	4	order to help the students
Hermite interpolating polynomial; Cubic spline interpolation. Least		to develop the necessary
square approximation.		skils, we use several
5. Numerical evaluation of simple integrals (trapeze method, Simpson	4	methods such as
method, Newton method). Numerical evaluation of double integrals.		exercising, discussions,
6. Differential ordinary equations: Euler method, Runge- Kutta methods;	4	brainstorming, debate.
systems of differential ordinary equations.		Laboratory platforms
7. Partial differential equations – elliptic type. Finite difference method.	2	(containing the abstract
	2	of the theory and the
8. Evaluation		algorithms) are at the
		disposal of the students.

Bibliography⁸

- 1. Hoffman J., Frankel S., Numerical Methods for Engineers and Scientists, Second Edition, Marcel Dekker, Inc., 2001
- 2. Popa M., Militaru R., Metode numerice in pseudocod. Aplicatii, Ed. Sitech, Craiova, 2013

9. COURSE CONTENT CONJUNCTION WITH EXPECTATIONS OF THE EPISTEMIC COMMUNITY REPRESENTATIVES, PROFESSIONAL ASSOCIATIONS AND EMPLOYEE REPRESENTATIVES IN THE PROGRAM DOMAIN

By following this course, the students acquire and develop various concepts, methods and modern mathematical techniques, utilized in the mathematical modeling and in engineering problems.

10. EVALUATION

Activity Type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Final mark weight
10.4 Course	We evaluate the ability of the	Exam: written examination	70%
	students to:		
	- understand the	Mandatory condition in order	
	problem	for the students to be allowed	
	- formulate the	to sustain the exam:	
	mathematical	accomplishment of all the the	
	statement of the	projects of the practical	
	problem	activities from the laboratory.	
	- solve the problem.		
		Evaluation: written	
		examination: 4 practical	
		problems. Each problem will	
		be evaluated on a scale from 1	

r						
		to 10 and the written				
		examination mark is obtained				
		as the arithmetic mean of the				
		marks that were obtained for				
		the four practical problems.				
		The written examination mark				
		represents 70% from the final				
		examination mark.				
10.5 Practical activities	L:	The evaluation of the practical	30%			
	- the degree of	activities is based on the				
	development of the	evaluation of the homework				
	practical abilities and	and on a final practical test				
	of the capability to	using the computer. The				
	handle the notions, the	examination mark for the				
	techniques, and the	practical activities represents				
	numerical methods	30% from the final				
	that were introduced	examination mark and it is				
	- the ability to apply	obtained as follows: 1/3 is				
	what was learned	provided by the evaluation of				
	- criteria that are	the homework and $2/3$ is				
	focused on the	provided by the laboratory				
	conscientiousness and	test.				
	on the interest for					
	individual study of					
	each student					
10.6 Minimum standard	of performance (the minimum kno	l weledge necessary to promote disc	inline and how to check the			
knowledge acquiring)	or performance (the minimum kild	wreage necessary to promote disc	ipline and now to check the			
	of the basic notions					
-	imum of 50% from the scores of al	l of the examinations				
			tained at the written			
- the calculus of the final examination mark is made by adding 70% from the mark obtained at the written						
examination to 30% from the mark obtained at the practical activities.						

Date of completion:

Course Holder

(signature)

UB2_

Date of approval:

Department Director

(signature)

.....

Applicative activities holder

(signature)

UB2_

Notă:

- 1) 2) Study level - select one of the possible choices: L (licence or undergraduate)/ M (master)/ D (doctoral).
- Choose the code as defined by HG nr. 493/17.07.2013.
- 3ý Type (content) - select one of the possible choices:
- for the licence or undergraduate level: DF (fundamental discipline)/ DD (domain discipline)/ DS (specialty discipline)/ DC (complementary discipline);
- for the master level: DA (thoroughgoing study discipline)/ DS (synthesis discipline)/ DCA (advanced knowledge discipline).
- Condition of discipline (compulsoriness) select one of the possible choices: DI (compulsory discipline)/ DO 4) (optional discipline)/ FC (facultative discipline).
- Obtained by means of adding the number of hours from 3.4 and 3.7. 5)
- A credit is equivalent with 25 30 hours of study (didactical activities and individual study). 6)
- 7) The aspect of professional and transversal competences will be considered according to the OMECTS Methodology no 5703/18.12.2011. Competences are those listed in RNCIS (http://www.rncis.ro/portal/page? pageid=117,70218& dad=portal& schema=PORTAL) for the field of study from 1.4 and the study program from 1.6 in which the discipline is enrolled, in this academic sheet.
- 8) At least one title is recommended to belong to the collective co-ordinating discipline, and at least 2-3 titles to refer relevant papers for the discipline from the national and international circuit, from the library of UCv.